建築物エネルギー消費性能基準等における一次エネルギー消費量算定方法の変更について

平成 28 年 4 月 1 日

第九章「太陽光発電設備」の一部を下記のように変更します。

変更前	変更後
Ver.03(住宅・住戸の省エネルギー性能の判定プログラム Ver.01.15)	Ver.04(エネルギー消費性能計算プログラム(住宅版)Ver.2.0)
第九章 太陽光発電設備	第九章 太陽光発電設備
(服各)	(略)
3. 用語の定義	3. 用語の定義
(略)(第3節全文)	第一章の定義を適用する。
4. 記号及び単位	4. 記号及び単位
4.1 記号	4.1 記号
<u>この計算で</u> 用いる記号及び単位は表 9.1 による。	<u>本計算で</u> 用いる記号及び単位は表 1 による。
表 <u>9.1</u> 記号及び単位	表 1 記号及び単位
(表 <u>9.1</u> 省略)	(表 <u>1</u> 省略)
4.2 添え字	4.2 添え字

この計算で用いる添え字は表 9.2 による。

表 9.2 添え字

(表 9.2 省略)

(以下、表番号の変更については省略する)

(略)

9. 太陽電池アレイの総合設計係数

太陽電池アレイの総合設計係数 K_n は、式(3)により表される。

$$\underline{K_{p,i,d,t}} = \underline{K_{HS,i}} \times \underline{K_{PD,i}} \times \underline{K_{PT,i,d,t}} \times \underline{K_{PA,i}} \times \underline{K_{PM,i}} \times \underline{K_{IN,i}}$$
(3)

ここで、

(略)

 $K_{IN.i}$: 太陽電池アレイiのインバータ回路補正係数 (表 9.4 の値)

である。

(略)

<u>太陽電池アレイiの</u>インバータ回路補正係数 $K_{IN,i}$ は、表 <u>9.4</u>の値に依らず、式(4)により表される値を用いることができる。

$$\underline{K_{IN\,i}} = \eta_{IN\,R} \times 0.97 \tag{4}$$

(略)

複数台のパワーコンディショナが設置され、かつ、全てのパワーコンディショナの定格負荷効率が明らかである場合は、そのうち最も定格負荷効率の低いパワーコンディショナの値を採用すること。複数台のパワーコンディショナのうち定格負荷効率が不明なものが1台以上ある場合は、 $\underline{太陽}$ 電池アレイ \underline{io} インバータ回路補正係数 $\underline{K_{IN-i}}$ として表 $\underline{9.4}$ の値を用いること。

(以下、略)

本計算で用いる添え字は表2による。

表 2 添え字

(表 2 省略)

(以下、表番号の変更については省略する)

(略)

9. 太陽電池アレイの総合設計係数

太陽電池アレイの総合設計係数 K_n は、式(3)により表される。

$$\underline{K_{p,i,d,t}} = K_{HS,i} \times K_{PD,i} \times K_{PT,i,d,t} \times K_{PA,i} \times K_{PM,i} \times K_{IM}$$
(3)

ここで、

(略)

K_{IN}: インバータ回路補正係数(表 <u>4</u>の値)である。

(略)

インバータ回路補正係数 K_{IN} は、表 $\underline{4}$ の値に依らず、式(4)により表される値を用いることができる。

$$\underline{K_{IN}} = \underline{\eta_{INR}} \times 0.97 \tag{4}$$

(略)

複数台のパワーコンディショナが設置され、かつ、全てのパワーコンディショナの定格負荷効率が明らかである場合は、そのうち最も定格負荷効率の低いパワーコンディショナの値を採用すること。複数台のパワーコンディショナのうち定格負荷効率が不明なものが1台以上ある場合は、インバータ回路補正係数*Kun*として表<u>4</u>の値を用いること。

(以下、略)