目次

1	はし	 ごめに		- 1	
2	広地	或CFD解析の理論式		12	
2.	1	11 L N L C / / *		12	
2.	2	上方である 然 [[]		18	
2.	3	表面温度の設定		27	
3	計算	章プログラムの最適化		37	
3.	1	M 1010 1010 1010 1010 1010 1010 1010 10		37	
3.	2	必要になる計算機資源の推定		37	
3.	3	b) 21-2 - 7 / 5 - (*) b)		39	
3. 3.	4 5	最適化の作業内容 最適化の行程		42 44	
υ.	J	AX /匝 □ V / 1 / 住		77	
4	入力データの作成				
4.	1	データ整備の概要		49	
4.	2	地盤および建物の高さ		49	
4.	3	建物等幾何データのメッシュ整備		60	
4.	4	土地利用		62	
4.	5	日射到達高さ		66	
4.	6	人工排熱		67	
5	東列	京23区全域を対象にした気温、風速分布の	の大規模数値解析	86	
5.	1	概要 -		86	
5.	2	カギルトがロンド		89	
5.	3	広域CFD解析の事例集 -		90	
5.	4	地域類型化 -		91	
5.	5	考察 -		93	
C	7日 8	こんと中日し人公の細環(純粒		1.40	
ь	付!	られた成果と今後の課題/謝辞 -		148	
参考文献		秋 -		149	
,	/ / < 11			110	
研究発表等(平成16~21年度)		長等(平成16~21年度) -		152	
付録説明:東京ヒートマップについて		月:東京ヒートマップについて -		158	
劫练学/延宠矣而学				160	
執筆者/研究参画者 ————————————————————————————————————				100	
付録:東京ヒートマップ (CD-ROM)					

図表一覧

- 図1 都市が高温化する要因
- 図2 ヒートアイランドの数値モデル
- 図3 隅田川周辺の気温と風(地上10m)
- 図4 体積占有率が小さくなる典型例
- 図5 実質的な格子
- 図6 日陰域の簡易判別
- 図7 建物壁面と日射向きの配置パターン
- 図8 日陰判定の事例
- 図9 葉1枚を含む微小領域における放射の透過
- 図10 葉面の配置と有効表面積
- 図11 地表面温度の日変化(2005年7月31日、東京)
- 図12 加速率と最大経過時間(最大経過時間が大きなものを矢印で表示)
- 図13 加速率と平均ベクトル長(最大経過時間が大きなものを矢印で表示)
- 図14 ロードインバランス (16CPU) (ICCG (+BiCGSTAB) 関連を矢印で表示)
- 図15 ロードインバランス (64CPU) (ICCG (+BiCGSTAB) 関連を矢印で表示)
- 図16 領域分割法
- 図17 領域分割法における通信処理
- 図18 配列の「使い廻し」の例
- 図19 動的割当機能を利用する例
- 図20 最適化の行程
- 図21 300ノード利用申請 (960プロセス)
- 図22 300ノード利用申請(2,400プロセス)
 - (a) 戸越
 - (b) 汐留
- 図23 データ整備範囲
- 図24 1mDSMの分布事例
- 図25 5mメッシュ分解した建物に高さを設定した例(東京ドーム周辺)
- 図26 大規模な建物における建物高さの詳細化の例
 - (a) 建物階数データに基づく従来の方法
 - (b) 1mDSMデータを用いる今回の方法
- 図27 CADデータを適用した地区
 - (a)汐留地区
 - (b) 建物配置
- 図28 MAPCUBE建物(一般建物)と東京都GIS建物の水平位置の比較
- 図29 CADとGISを組み合わせた都市幾何形状の3次元表現(CFD解析結果を含む)
- 図30 用途別建物平均階高
- 図31 用途別延床面積規模別平均階高
- 図32 建物の分布(4階以上)
 - (a) 住宅地図データ
 - (b) 東京都GISデータ
- 図33 開口率・体積占有率の計算例(左:球体の場合、右:直方体の場合)
- 図34 開口率・体積占有率の計算例
 - (a) 開口率(東西南北)
 - (b) 開口率(上下)、体積占有率
- 図35 汐留付近における体積占有率分布の例(k=10)
- 図36 密接した建物の屋上面および壁面
- 図37 詳細化した建物の屋上の一部
- 図38 街区区域より作成した道路オブジェクト
- 図39 建物排熱の推計フロー
- 図40 事業所排熱(地上、煙突)の推計フロー
- 図41 建物各棟からの顕熱分布例(14時)その1
- 図42 建物各棟からの顕熱分布例(14時)その2

- 図43 建物各棟からの潜熱分布例(14時)その1
- 図44 建物各棟からの潜熱分布例(14時)その2
- 図45 建物各棟からの排熱の排出位置(その1)
- 図46 建物各棟からの排熱の排出位置(その2)
- 図47 自動車排熱(消費エネルギーベース)の推計フロー
- 図48 5mメッシュ別路面高さ(自動車排熱高さ)の例
- 図49 5mメッシュ別路面高さ(自動車排熱高さ)の例
- 図50 5mメッシュ別の自動車顕熱 (14時) の例
- 図51 5mメッシュ別の自動車顕熱(14時)の例
- 図52 地表面近傍における人工排熱(顕熱14時)の例
- 図53 地表面近傍における人工排熱(顕熱14時)の例
- 図54 断面位置
- 図55 5mメッシュ別人工排熱量(顕熱14時)の例(西→東方向の鉛直断面)(1)
- 図56 5mメッシュ別人工排熱量(顕熱14時)の例(西→東方向の鉛直断面)(2)
- 図57 5mメッシュ別人工排熱量(顕熱14時)の例(西→東方向の鉛直断面)(3)
- 図58 5mメッシュ別人工排熱量(顕熱14時)の例(西→東方向の鉛直断面)(4)
- 図59 5mメッシュ別人工排熱量(顕熱14時)の例(西→東方向の鉛直断面)(5)
- 図60 解析領域
- 図61 解析の流れ
- 図62 メソスケール解析結果 2005年7月31日14時(第2階層、地上10m)
- 図63 気温の分布(500mメッシュ平均)2005年7月31日14時
 - (a) 地上2m
 - (b) 地上10m
 - (c) 地上50m
 - (d) 地上100m
- 図64 スカラー風速の分布(500mメッシュ平均)2005年7月31日14時
 - (a) 地上2m
 - (b) 地上10m
 - (c) 地上50m
 - (d) 地上100m
- 図65 体積占有率の分布(500mメッシュ平均)2005年7月31日14時
 - (a) 地上2m
 - (b) 地上10m
 - (c) 地上50m
 - (d) 地上100m
- 図66 比湿の分布 (500mメッシュ平均) 2005年7月31日14時
 - (a) 地上2m
 - (b) 地上10m
 - (c) 地上50m
 - (d) 地上100m
- 図 6 7 鉛直方向の風速の分布 (500mメッシュ平均) 2005年7月31日14時
 - (a) 地上2m
 - (b) 地上10m
 - (c) 地上50m
 - (d) 地上100m
- 図68 気温の鉛直断面分布(500mメッシュ平均)2005年7月31日14時
 - (a) $Y=-22000 \sim -21500 \text{m}$
 - (b) Y=-13000~-12500m
 - (c) $Y=-4000\sim-3500m$
 - (d) $Y=5000\sim5500$ m
- 図69 スカラー風速の鉛直断面分布 (500mメッシュ平均) 2005年7月31日14時
 - (a) $Y=-22000\sim-21500m$
 - (b) $Y=-13000\sim-12500m$
 - (c) $Y=-4000\sim-3500$ m
 - $(d) Y=5000\sim5500m$

- - (a) $Y=-22000\sim -21500m$
 - (b) $Y=-13000\sim-12500m$
 - $(c) Y = -4000 \sim -3500 m$
 - (d) $Y=5000\sim5500m$
- 図71 東京23区全域の気温分布(地上10m) 2005年7月31日14時
- 図 7 2 METROSの観測による東京23区の気温分布(東京都)2005年7月31日14時
- 図73 気温分布の事例(図71の実線で囲んだ矩形領域)2005年7月31日14時
 - (a) 地上10m
 - (b) 地上2m
- 図74 気温、風速の鉛直断面分布(図71の点線部分)2005年7月31日14時
- 図75 水平ロール渦
- 図76 東京都心臨海部(10km四方)
- 図77 東京都心臨海部 (10km四方) における気温分布 2005年7月31日14時
 - (a)標高34.7m
 - (b)標高65.1m
 - (c)標高112.6m
- 図78 東京都心臨海部(10km四方)におけるスカラー風速分布 2005年7月31日14時
 - (a)標高34.7m
 - (b)標高65.1m
 - (c)標高112.6m
- 図79 隅田川 2005年7月31日14時
 - (a) 土地利用
 - (b) 風速 (標高11.0m)
 - (c) 気温 (標高11.0m)
 - (d) 土地利用その2
 - (e) 気温(標高21.5m)・風速(標高23.2m)
- 図80 目黒川 2005年7月31日14時
 - (a) 土地利用
 - (b) 風速 (標高3.6m)
 - (c) 気温 (標高3.6m)
- 図81 皇居 2005年7月31日14時
 - (a) 土地利用
 - (b) 風速 (標高30.6m)
 - (c) 気温(標高30.6m)
- 図82 汐留·有楽町 2005年7月31日14時
 - (a) 土地利用
 - (b) 風速 (標高3.6m)
 - (c) 気温 (標高3.6m)
 - (d) 風速 (標高48.5m)
 - (e) 気温 (標高48.5m)
- 図83 臨海部のライフライン施設 2005年7月31日14時
 - (a) 土地利用
 - (b) 風速
 - (c) 気温
- 図84 赤坂・六本木・恵比寿 2005年7月31日14時
 - (a) 土地利用
 - (b) 風速ベクトル (u, v) (標高92.3m) ・鉛直風速 (標高88.6m)
 - (c) 風速ベクトル (u, v) (標高92.3m)・気温(標高88.6m)
 - (d) 土地利用その2
 - (e) 風速ベクトル (u, v) (標高39.0m)・気温 (標高36.8m)
- 図85 新宿・渋谷・四谷 2005年7月31日14時
 - (a) 土地利用
 - (b) 風速ベクトル (u, v) (標高39.0m)・気温 (標高36.8m)
 - (c) 土地利用 2

- (d) 風速ベクトル (u, v) (標高39.0m)・気温 (標高36.8m)
- (e) 土地利用 3
- (f) 気温 (標高41.3m)
- (g) 気温 (標高77.9m)
- 図86 第1主成分得点の分布
- 図87 第2主成分得点の分布
- 図88 第3主成分得点の分布
- 図89 第4主成分得点の分布
- 図90 第5主成分得点の分布
- 図91 クラスター分析による地域類型
- 図92 上空と地上付近の気温差
 - (a) 気温差と風速比
 - (b) 気温差とグロス建ペい率
- 図93 圧力の鉛直分布
- 図94 体積占有率の鉛直分布
- 図95 風速比の鉛直分布
- 図96 気温差の鉛直分布

- 表1 本研究資料で使用する記号一覧
- 表2 数値解析コードの概要
- 表 3 熱伝導率の補正値 η と実質的な格子幅の比 r の対応
- 表 4 上空および側方境界条件
- 表 5 東京の観測データ (2005年7月31日)
- 表6 地表面熱収支パラメータの事例1
- 表7 地表面熱収支パラメータの事例2
- 表8 地表面熱収支パラメータ (本研究資料)
- 表 9 ベクトル性能
- 表10 並列性能
- 表11 メモリ使用量(30km四方を想定)
- 表12 AMGCG法とICCG法の比較
- 表13 インバランス状況のサブルーチン比較
- 表 1 4 並列性能
- 表 1 5 最大コスト(約40%)を占めるk3d_bcgstbの状況(Rank0)
- 表16 高コストを占めるサブルーチン (k3d_bcgstb以外)
- 表17 地域別使用データ
- 表18 5mDEMと1mDSMによる平均標高の差分の例
- 表19 用途 、延床面積別の建物棟数(東京23区) 国土地理院1mDSMデータ、東京都GISを用いた場合
- 表20 川崎市GISの建物用途と東京都GISの建物用途の対応
- 表21 横浜市GISの建物用途と東京都GISの建物用途の対応
- 表22 建物用途と建物名称の関係から抽出した用途別キーワードの例
- 表23 住宅地図データを利用した場合の建物用途と地上階数の設定方法
- 表24 東京都GISの土地用途コードと土地利用項目の対応
- 表25 川崎市GISの土地用途コードと土地利用項目の対応
- 表26 横浜市GISの土地用途コードと土地利用項目の対応(その1)
- 表27 横浜市GISの土地用途コードと土地利用項目の対応(その2)
- 表28 細密数値情報(10mメッシュ土地利用)の用途と土地利用項目の対応
- 表29 人工排熱の排出位置
- 表30 東京都GISの建物用途と人工排熱用途区分の対応表
- 表31 川崎市GISの建物用途と人工排熱用途区分の対応表
- 表32 横浜市GISの建物用途と人工排熱用途区分の対応表
- 表33 地域冷暖房計画区域の熱源システムおよび供給延床面積
- 表34 地域冷暖房の熱源システムの分類
- 表35 「LOCALS」のモデル構成
- 表36 主成分分析による成分行列
- 表37 類型毎のクラスター中心