A Proposal of Seismic Isolation Suitable for Developing Countries

Jishnu Subedi Nepal Engineering College Housing in Developing Countries

Three typical buildings in Urban Nepal

Brick with Cement mortar Column-Beam system with Brick Infill

Traditional house with Brick and Mud-mortar, Tile roof

Typical rural buildings

Nepal

Stone Oval shaped house in Rural Nepal One room Stone house in Pakistan

Figure 5 (b) A historical three story building, with single room at each flow; well standing the past reismic events.

Pakistan

Source: World Housing Encyclopedia http://www.world-housing.net/index.asp

Base Isolation for low cost buildings (?)

- Li (1984): April 13, 1960 earthquake in Tuqiato Village, Jilin Province, Northern China
- Most houses collapsed, one survived
 - Neck in the root of the wall because of weathering
 - Natural base isolation: Upper part of the house slided

Lessons Learned Over Time: Learning from Earthquake Series, II EERI, 1999.

- Friction Pendulum Syste
- Court of Appeals, San Francisco

Earthquake Protection Systems, Inc., California

Friction System Base Isolation

- Flexible layer and energy dissipation in single system
- Robust
 - Insensitive to frequency variation
 - Insensitive to amplitude variation in input excitation
- Large sliding
- Residual displacement

Friction System Base Isolation

- 20-30 cm thick brick masonry wall (Unreinforced)
- Wood diaphragm at floor level
- Sliding type of base Isolation
 - Smooth surface at plinth level
 - Sand grain (crushing strength is important)
 - Another layer of smooth surface
 - Super structure

Application of Isolation System

Traditional (historical) masonry building Modeled and analyzed by simplified model Sliding type isolation was used

Schematic Diagram

Residual displacement from the Analytical Model

Base Isolation by Ball Systems

Transmissibility Ratio

Fixed base : 1.54

Base Isolation : 0.50

Qiang et. Al., 1998, EE & SD

Base Isolation by Ball System with Restoring Facility

Variable Frequency Pendulum Isolator

- Curved sliding surface
- progressive period shift at different response levels
- Advantages of both the pure friction (PF) isolation system and FPS

Schematic diagram of curved sliding-surface isolator.

Curved surface instead of plain

Consideration for base isolation

Cost

- How much increase in cost is acceptable?
- Low maintenance cost
- Technically simple
 - Semi-skilled and locally trained people should be able to implement
- Locally available materials
- Durable
 - No change during life time of building

Distributed base isolation

- A reinforced concrete beam stays on the mortar layer to form a stiff base for the masonry walls of the first story level.
- The mortar layer is reinforced by a series of vertical bars of mild steel, anchored to the cast-concrete foundation and to the building's base wall.
- A further layer of elastomeric waterproof can be used

Conclusions

- Low cost base isolation is achievable
- Instead of installation of new system, focus should be on adjustment of existing construction technology
- Separation of super-structure with foundation with restriction in displacement is good alternative
- Various techniques like distributed base isolation and VFPI should be explored for their real field behavior and construction feasibility

THANK YOU