ONLY PUT ON !

Low cost base isolations by slide bearings without restoration mechanism

Eizaburo Tachibana Professor Emeritus of Osaka Univ.

Motivation

Typical Isolator System

Problems

- 1) It's expensive.
- 2) The resonance arises if long cycle periods are included in earthquake.

Let's change of our mind.

Then how to change?

We should be satisfied if the acceleration of the building can be decreased to the 50%.

We should allow the remaining gap of the building after the earthquake.

We should not devour.

Washing water at ZEN temple

So, let's remove all devices

ONLY PUT ON Concept

It's very simple idea

Remaining gap can be recovered by oil jack

10

Oil Jack

We can find it at old temples

Matters of weight for put on type bearings

? Desirable frictional coefficient μ

? Maximum gap δ_{max} and remained gap δ_{rem} after the earthquake

The necessary condition of $\boldsymbol{\mu}$

a) Do not slide due to wind force or small earthquakes

b) Must slide by big earthquake (Max acceleration>200cm/sec²)

 μ 0. 2 \square Stainless Steel

Let's verify it by experiment

Magnetic Shaking Table (Elev.)

Magnetic Shaking Table (Photo)

Rigid Body Tests

Parameter

Earthquake

- 1) JMA KOBE NS *
- 2) JMA KOBE EW *
- 3) El Centro NS **
- Change time increments from Δt to Δt/2
- ** Change time increments from Dt to Dt/2 and the acceleration is amplified to twice.

Slide Surface

- 1) Without Lubrication
- 2) With Lubrication

Weight of Cart [N]

- 1) 120.6
- 2) 217.4
- 3) 310.7
- 4) 410.1
- 5) 509.4

Identification of frictional coefficients

Expression of Frictional Coefficients

$$\mu = \begin{cases} \mu^{*} & \dot{x} < -\dot{x}_{\lim}, \dot{x}_{\lim} \leq \dot{x} \\ \left| \frac{\dot{x}}{\dot{x}_{\lim}} \right| \mu^{*} & -\dot{x}_{\lim} \leq \dot{x} < \dot{x}_{\lim} \\ \dot{x} & : \text{ Relative velocity} \\ \dot{x}_{\lim}; & \text{Smoothing parameter} \\ \mu^{*} = \mu_{d} + (\mu_{s} - \mu_{d}) \exp\left(-c\left|\dot{x}\right|\right) & \mu_{s}, \mu_{s} \\ \mu_{s}: \text{Static frictional coefficient} \\ \mu_{d}: \text{Dynamic frictional coefficient} \end{cases}$$

C : Index attenuation coefficient

$$f_s, \mu_d, c$$
 : Target parameters

Identification method

Identified values

24

Comparison of simulations with²⁵ experiments

Acceleration

Displacement

Three story frame

26

Weight and stiffness of models 27

Calculation of stiffness

	Model 1	Model 2		0	
Modulus of longitudinal elasticity [N/cm]	10976000	10976000			В
B [cm]	0.9	0.9	$l_{k} = \frac{12EI}{12EI}$	n I	
H [cm]	0.3	0.4	$\kappa = \frac{1}{h^3}$	¥ 6	
h [cm]	15.0	15.0	BH^3	2	
4k [N/cm]	316.1	749.3	I = 12		

Weight and stiffness

	Model-1		Model-2		
	Weight [N]	Stiffness [N/cm]	Weight [N]	Stiffness [N/cm]	
3rd Floor	54.1	316.1	54.1	749.3	
2nd Floor	69.6	316.1	69.6	749.3	
1st Floor	73.5	316.1	73.5	749.3	
Base	256.8	0.0	256.8	0.0	

Frequency-response curve

Frequency-response curve of Model 1

Natural frequency

Model	1st [Hz]	2nd [Hz]	3rd [Hz]
Model 1	5.0	12.9	18.8
Model 2	7.3	19.2	27.8

28

Experimental condition

Input motion

Modified earthquake motions: JMA KOBE NS*, JMA KOBE EW*, EI Centro NS** (* time scale factor = 0.5) (** time scale factor = 0.5, amplification scale factor = 2.0)

Installation

Three installation conditions: Fixed base model, Sliding base model (two sliding surfaces:

No lubrication and Lubrication)

Measurement

Each story's acceleration and inter-story drift

Video

Video-1

Video-2

Acceleration time histories

31

Inter-story drift

Sliding displacements at the base

Input	Installation conditions	Model	Max. Disp. of Base [cm]	Residual Disp. of Base [cm]
JMA KOBE NS*	No lubrication	Model 1	10.24	9.12
JMA KOBE NS*	Lubrication	Model 1	8.93	4.07
JMA KOBE EW*	No lubrication	Model 1	1.54	1.08
JMA KOBE EW*	Lubrication	Model 1	5.80	5.08
El Centro NS **	No lubrication	Model 1	4.27	4.12
El Centro NS **	Lubrication	Model 1	4.05	0.98
JMA KOBE NS *	No lubrication	Model 2	10.24	9.73
JMA KOBE NS *	Lubrication	Model 2	10.78	6.04
JMA KOBE EW *	No lubrication	Model 2	2.89	2.38
JMA KOBE EW *	Lubrication	Model 2	7.89	6.57
El Centro NS **	No lubrication	Model 2	2.13	2.13
El Centro NS **	Lubrication	Model 2	3.12	0.31

Identification of frictional coefficients

Time histories of simulated 37 displacement 2.5 Fixed 1.5 Slide 0.5 -0.5 -1.5 First floor -2.5 3 0 9 12 6 15 Time [sec] 20 10

Comparison

Acknowledgement

This short note is due to following postgraduates' cooperation. Much of Figures are adopted from Dr.Nishimura's paper.

Dr. S. Ono (Ariake National College of Tech), Miss. K. Ikeuchi (Takenaka Co.), Miss Y. Kawai (Maeda Patent Office), Dr. H. Nishimura (Takenaka Co.) and Miss.S.Abe (Daiwa House Ind. Co)

Comment

I hope this old and simple method contribute to save many persons from seismic hazard.

Thank you.