既存建築物の地震後継続使用のための耐震性評価技術の開発

~熊本地震による RC 造建築物の被害を踏まえた検討~

構造研究グループ 主任研究員 向井 智久

I はじめに

本報では、H28 年度より実施している建築研究所指定研究課題 「既存建築物の地震後継続使用のための耐震性評価技術の開発」 の研究背景並びに研究概要、成果について紹介する。

Ⅱ 研究の背景

前課題との関係

前課題では構築した評価体系に基づき、「建築物の地震後の継続使 用性」を要求性能とした性能指向型耐震設計に資する検討手法の 構築を目指し3テーマに分けてH25年度より3カ年実施した。 具体には、サブテーマ1で東日本大震災における特徴的な被害 の特定とその要因分析、さらには地震後の継続使用性を確保する ための要求性能を提案し、サブテーマ2では、その要求性能に応 じた部位(RC造非耐力壁、鉄骨置屋根とRC柱との接合部、コン クリート製杭基礎)の損傷限界の評価方法について示した。またサ ブテーマ3は、サブテーマ1および2で示される要求性能と部位 の限界状態の評価方法を用いて、継続使用性の高い建築物の耐震 設計例等を作成した。なお、本研究課題では新築のみでなく、既存 建築物も対象としており、用途は主として地震後の速やかな継続 使用性が求められる防災拠点施設等(庁舎や避難施設)であった。 その検討結果より、新築の建築物に対する設計では、構造部材断面 を要求性能に応じて設計できることから、その設計法の道筋や実 現可能性はおおよそ示すことができたものの、既存建築物を対象 とした際の継続使用性評価については以下の技術的な課題が残さ れた。

課題1. 一般用途の建築物(住宅や事務所ビル等)にも適用できる 耐震性評価体系の構築が必要

課題2.時刻歴応答解析等を用いない損傷評価技術が必要

課題 3. 既存中高層建築物の地震後の損傷を低減できる耐震改修 技術が必要

前述の研究課題において,被災した建築物の管理者へのヒアリ ング調査を分析した結果,地震後の建築物の継続使用性は図1の 通り判断されているが,図より応急危険度判定で一見して危険と なる場合を除き,その後の詳細調査において継続使用性の判定が

行われている。このことは継続使用性を判定するまでに時間を要 するため、その間、建築物は利用できない状態となる場合も存在す る。一方、近年建築物の地震時の挙動をデジタル化して表示するこ とで、地震後の初動対応を支援するツールが各所で開発・実用化さ れつつある。建築研究所においては全国約 60 箇所において強震観 測を実施し、地震時の建築物の応答性状の解明に貢献してきてい るものの、当該応答性状から地震後の継続使用性を迅速に判定す る手法の構築には至っていないため、以下の技術的課題がある。

課題 4. 被災建築物の地震後継続使用性を早期に判定する技術が 必要

そこで上記課題1-3 について、本研究では、前述の平成27 年度ま でに実施してきた重点研究課題の成果を引継ぎ、一般の既存建築 物(共同住宅や事務所ビル等)を対象として、地震後の継続使用性 を評価するに必要な技術開発を行い、時刻歴応答解析によらない 損傷評価手法を提案し、かつ既存中高層建築物の耐震補強設計に 役立つ技術を開発し、将来的に取り纏める評価指針に役立てるこ とを目的とする。さらに上記課題4 については、被災建築物の地 震後継続使用性の判定に役立つツールの開発を行い、地震後の被 災調査の合理化に資する判定手法の確立に資することを目的とす る。なおここでは、周辺インフラが対象建築物の地震後継続使用 性に与える影響は考慮しない。

将来的には、ここで開発する評価手法に基づき、部位の修復性を 含めた建築物の地震後の機能性を評価できるよう手法へ拡張し、 さらに地震後の機能性に影響を与える建築物周辺のインフラが有 すべき必要な条件・性能について他分野と連携して検討するなど の展開が期待される。また前述の重点課題で取り纏めた地震後継 続使用性確保のための要求性能についての知見を活用する。

2) 熊本地震の発生

平成28年4月14日21時26分に熊本県熊本地方の深さ約10kmでマグニチュード(M)6.5の地震が発生し、上益城郡益城町 で最大震度7を記録した。さらに、約28時間後の4月16日01 時25分に同地方の深さ約10kmでM7.3の地震が発生し、上益城 郡益城町で再度震度7を、また阿蘇郡西原村でも震度7を記録し た。これらの地震により、熊本県を中心に数多くの建築物に倒壊な どの被害がもたらされた。これらの地震の発生を受け、建築研究所 では国土交通省国土技術政策総合研究所(以下「国総研」という。) と連携して、建築物を中心とした被害状況を把握し必要な対策等 に活かすため、情報収集、現地調査、調査結果のWeb公開等のさ まざまな活動を実施した。現地調査は、国土交通省住宅局からの要 請に基づき、木造建築物、鉄骨造建築物、鉄筋コンクリート造等建 築物,地盤・基礎,免震建築物,非構造部材,建築設備,火災について14次に亘る調査班が派遣され,それとは別に自主調査として,本研究課題において庁舎建築物の継続使用性に関するヒアリング 調査等も実施した。

Ⅲ 研究計画

(1) 熊本地震で被害を受けた RC 造建築物の被害要因分析の検討 研究テーマ 1 では「地震後の継続使用性に資する建築物の耐震性 評価手法の提案」として、新耐震設計ならびに耐震補強された既存 建築物を対象として、地震発生前および後における時点の地震後 の建築物の継続使用性評価に資する検討を実施する。主として、 2016年4月に発生した熊本地震で被災した建築物を対象として以 下の検討を実施する。

・熊本地震で被災した庁舎の継続使用性に関するヒアリング

・各種構造(RC造,鉄骨造,木造,非構造,基礎構造,地震入力) について現地で被災調査等を実施し,速報の取りまとめ

・地震後継続使用性評価のための既存 RC 造建築物の詳細調査並 びに被害要因分析

(2)継続使用性を高める部材の耐震改修工法に関する検討 研究テーマ2では「地震後の継続使用性に資する部位の耐震性能 評価手法および継続使用性向上耐震技術の開発」として、部位の損 傷状態の把握や耐震性向上を目的とした構造実験を行い、部位の 損傷評価手法や継続使用性向上に資する耐震改修技術を開発する。 具体的には以下に示す通り。

・鉄筋コンクリート造の上部構造の部位の応答と損傷性状の関係, 損傷と修復工法の関係,中高層建築物向けの耐震補強技術に関す る資料収集と分析

・中高層既存建築物に対する耐震性向上技術の開発

・RC 造非耐力壁に対する耐震改修技術開発

・コンクリート杭に対する耐震改修技術開発

・ 地震後の一般建築物における継続使用性評価に必要な部位の損 傷状態に関するデータ収集

・RC 造非耐力壁に対する損傷性状評価技術の開発

・コンクリート杭に対する損傷性状評価技術の開発

(3) 被災建築物の地震後損傷を評価する計測技術に関する検討 研究テーマ3では「被災建築物の継続使用性を判定する技術の開 発」として, 地震時における損傷を評価できる計測情報に基づき地 震後の継続使用性を判定するに役立つツールの検討を行う。

・地震時に生じる損傷を計測する個別ツールの情報収集と分析

・強震観測に基づく既存建築物の耐震性能評価

Ⅳ 熊本地震で被害を受けた RC 造建築物の被害要因分析の検討 (1) 被害事例 A (ピロティ構造に被害があった共同住宅 (1981年 以降に設計) 1)

1) 建築物概要

本建築物は、ピロティ建築物に関する告示改正や設計法2)が提示 される以前の 1992 年に熊本市に建設された桁行方向 4 スパン, 梁間方向1スパンの10階建RC造集合住宅である。本検討で対象 とする建築物の梁伏図および梁間方向の軸組図を図1 および図2 にそれぞれ示す。桁行方向のスパン長さはX1~X2およびX4~X5 間で 6.0m, X2~X3 および X3~X4 間で 6.4m であり、梁間方向 のスパン長さは11.7m である。主要部材の断面表を表1に示す。 1 階の柱断面はいずれも 950mm 角に対し, 2 階の柱は 950×750mm で、1 階柱に対して梁間方向北側にセットバックし ていた。ピロティ形式である X2~X4 構面の各柱には、中子筋が 桁行方向のみ配筋されており,桁行方向と梁間方向のせん断補強 筋量の差が大きい。桁行方向では、Y1およびY2構面ともに柱際 や開口際に鉛直方向の部分スリットが設けられていた。梁間方向 では壁厚150mmのX5構面の1階壁の両端部から50mm角の目 地材が確認されたが、構造図面には部分スリットを設ける旨の記 載は無く、当該壁が耐力壁として設計されたかどうかは不明であ る。梁間方向の2階の大梁(枠梁)は300×600mmで,桁行方向 の2階の大梁 (540×700mm) と比較して幅, せいともに小さい。 1 階柱の内法スパンはいずれも2150mm である。

Ν Y1 6000 6400 6400 6000

X3

Χ4

X5

V2

写真1 対象建築物(南面)

図1 梁伏図(単位:mm)

X2

X1

	表1	部材断面表		
記号	1 階柱(X2~X4)	2 階梁(X2~ X4)	造	1 階壁 (X5),
寸法	950mm×950mm	300mm× 600mm		2~10 階壁 (X1~X5)
主筋	16-D25	6-D25	壁厚	150mm
	桁行:4-D13@60 (X3),		縦筋 横筋	D10@175 シングル
せん断補強	4-D13@80(X2, X4) 梁間:2-D13@60	2-D10@200	記号	1 階壁 (X1)
筋	(X3), 2-D13@80 (X2, X4)		<u>壁厚</u> 縦筋 構筋	180mm D10@250 ダブル
断面			記号版厚	床スラブ 150mm

(X1) 油壁脚部 (X2) コン -+ X3 => -> X4) => (X5) V (Y2) Ν 損傷度の記載 梁間方向の 梁主筋が座屈 桁行 ■ 梁間 11700 部分スリット: 🔻 壁脚の壁縦筋の 重ね継ぎ手部で 梁端 圧縮ひび割れ m Y1 柱梁接合部 ひび割れ 柱梁接合き ひび割れ 注梁接合音 ひび割れ 柱脚の鉄筋が露出 主筋が座風 6000 6400 6400 6000

図3 1階の各部材の損傷度(文献3に追記)

(a) 1 階 X4Y2 柱

(c) X3 構面 2 階枠梁端部 写真2 主な被害状況(一部,文献5)に追記)

(b) 1 階 X5 構面妻壁

2) 被害概要

本建築物の被害状況は文献 3)に記載されており、本報では概要 のみ示す。被災度区分判定基準4に基づき判定した1階の各部材の 損傷度を図3に、主な被害状況を写真2にそれぞれ示す。X4Y2柱 はスパン中央付近で破壊し、コンクリートが剥落するとともに主 筋が座屈した(写真2(a))。X5Y1柱は壁板とともに脚部で破壊し、 同じくコンクリートが剥落するとともに主筋が座屈した(写真 2(b))。また、X3Y2柱では、柱自体の損傷度はIIに留まったが、写 真2(c)に示す通り、梁間方向の大梁の下端筋が座屈したため、損傷 度をVとしている。また、柱や大梁が大きな損傷を受けた梁間方向 のX3, X4 構面では、写真2(d)に示す通り、スパン中央付近で2 階 大梁に数センチ程度の鉛直たわみが生じたことが確認されている。 X1 通りの袖壁先端の脚部においても、顕著ではないものの圧壊が 確認されている。文献 4)に基づき算定した耐震性能残存率は、桁 行方向で35%、梁間方向で31%となり、被災度は両方向ともに「大 破」となった。なお、写真2に示す1階 X4Y2 柱や X5 壁の被害 は、1階Y2構面の壁が大きなせん断力を負担したことによるねじ れ応答が影響した可能性はある。しかし、本報では、新耐震ピロテ ィ建築物が有する問題点に関する知見の収集を目的に、1階柱のせ ん断破壊に加えて、梁間方向の2階大梁の端部損傷やスパン中央 付近の大きなたわみに着目して、二次元有限要素解析 5/~11)による 被害要因分析を行った。

3) 解析結果概要

本報では、顕著な被害を受けた Y2 構面の柱に着目するため、主 に北方向載荷時の解析結果について示す。北方向載荷時の 1 階層 せん断力—1 階層間変形角関係を図 4 に、各階層せん断力—層間 変形角関係を図5 に示す。また図5 中に、F_s=1.0、Z=0.9、C₀=1.0、 R=1.0 として、RC 造建築物の保有水平耐力計算における構造特性 係数 D_sの最大値 0.55 および最小値 0.30 を用いて計算した 1 階の 必要保有水平耐力を一点鎖線および破線でそれぞれ示す。図5 中 の分数は 1 階層間変形角を表し、本報では今後全ての図中の層間 変形角は1 階層間変形角とする。

1 階層間変形角(以下 R₁とする)算出の際,フーチング脚部から地盤面までの変形量は微小として無視し,2 階スラブ芯位置での 構面北端と南端の水平変位の平均を1 階の階高で除して求めた。 北方向載荷時は各構面が引張側柱の曲げひひ割れによって剛性が 低下した後, R₁=0.2%付近から X5 構面で南側柱主筋が多数引張降 伏して大きく剛性が低下した。R₁=0.70%時には X2~X4 構面のピ ロティ柱脚部のコンクリートの軟化が見られ,構面の耐力が低下 した。それに伴い, X5 構面の水平力負担が増加した。北方向載荷

図5 各階層せん断カー層変形角関係(北方向載荷)

時, X3 構面の最大耐力直前時 (R₁=0.63%) に, X3 構面に比べて, X1 構面は約2倍, X5 構面は約2.6 倍のせん断力を負担していた。

また、ピロティ構面の1階層間変形角が上階の層間変形角を大きく上回っており、ピロティ階に変形が集中していることが確認された。*R*i=1.0%時のベースシア係数は北方向載荷時に0.67であり、設計時に用いられた*DsやFe*は不明であるが、*Ds*=0.55、*Fe*=1.35となった場合の必要保有水平耐力に相当する。

(a) ピロティ柱の応力性状

X4 構面の北方向載荷時1 階柱脚部曲げモーメントー軸力関係を 図6 に示す。曲げ終局耐力 M_u およびせん断終局耐力時曲げモーメ ント M_{su} (= $Q_{nsu} \times a$, a: せん断スパン) は、それぞれ文献 2)の(付 1.3-13) ~ (付 1.3-15) 式および(付 1.3-16) 式を用いた。

引張側柱(北方向載荷時の南柱,南方向載荷時の北柱)はR₁=0.1% 以降全引張となり,せん断力は圧縮側柱(北方向載荷時は北柱)が ほとんど負担していた。圧縮側柱の軸力は,最大耐力時(R₁=0.63%) に軸力比にして0.40であり,釣合軸力に近い高軸力が作用してい た。圧縮側柱は解析から得たせん断スパン(=1640mm)を用いた 場合,解析結果がせん断終局耐力計算値と非常に近い値となった。 一方で,曲げ終局耐力計算値と解析結果も近い値となった。

図7に1階圧縮側柱のせん断補強筋のひずみ分布を示す。

R₁=1.0%時において降伏ひずみを超えたせん断補強筋の要素は X4Y2 柱の方が多い結果となり、X4Y2 柱が大きく損傷した実被害 と傾向は一致した。同じピロティ柱である X3Y2 柱と X4Y2 柱は、 実被害では前者は 2 階枠梁端部での圧壊、後者は柱中心部での破 壊が顕著であり、破壊性状に違いが見られた。これは X3Y2 柱の せん断補強筋間隔は 60mm であったのに対し、X4Y2 柱はせん断 補強筋間隔が 80mm と、X3Y2 柱に比べて広いためであると考え られる。これらの抵抗機構については構造実験を行うなど今後の 検討課題である。

(b) 2 階枠梁の断面形状と2 階壁縦筋量に関する検討

図8に2階枠梁に作用する軸力(圧縮正)を示す。凡例に示す 変形角は1階層間変形角である。解析では井戸硲ら12の研究と同 様に圧縮側柱(北柱)に取り付く2階枠梁端部に応力が集中し、コ ンクリートの軟化が見られ,圧縮方向を正として軸力比 (=N((Afc)) にして最大で 0.30 の軸力が作用していた。次に、図9 に南方向載 荷時の X3 構面の北側2 階梁下端主筋の軸ひずみ分布図(引張正) を示す。R1=0.7%時に北側端部で降伏ひずみを超えた。せん断補強 筋 (D13) の間隔が 200mm (=7.9d, d: 主筋径) と広いこともあっ て,繰り返し地震力を受けた場合,引張側で降伏した主筋に圧縮力 が作用し、被害のような座屈が生じたと考えられる。また、詳細は 省略するが、2階梁端部の平均せん断応力もコンクリートのせん断 強度を大きく上回るような値を示しており、今回の被害は2階枠 梁が梁端部に集中する応力(軸力,せん断力)を負担できる断面形 状を有していなかったことに加え、せん断補強筋の間隔が比較的 広く、主筋の座屈を十分に拘束できなかったことが原因の一つで あると考えられる。なお、実被害で2階梁の片端のみ損傷した理 由は、上階柱に対して1階柱が拡張されている方向や地震波の特 性などが影響したと考えられるが、詳細については今後の検討課 題である。

図10に2階壁の最下部の要素一列を取り出した壁縦筋の軸ひず み分布(引張正)を示す。凡例に示す変形角は1階層間変形角であ

R1=1/800rad

る。解析において 2 階枠梁のたわみが大きくなった北柱側面に近 い部分ではRi=1/800radを超えた付近の早期の段階から壁縦筋の降 伏が確認された。地震力が繰り返し入力されることによって,降伏 した壁縦筋に塑性ひずみが蓄積されて破断し,打継面に沿った2階 枠梁と 2 階壁のひび割れが大きな離間となり,実際の被害のよう な枠梁の大きな鉛直たわみが発生したと考えられる。

ピロティ構面2階の枠梁と2階壁筋量をパラメータとした検討 を実施したところ、ピロティ構面の2階梁を剛梁としたモデルは ここまでに検討してきたモデルに比べて、最大耐力が1.26倍に大 きく上昇した。

R1=1/400rad

4) まとめと課題

本研究では、ピロティ建築物に関する告示改正や技術基準解説 書に示される設計法の適用を受けていない新耐震基準に基づき, 熊本市内に建設されたRC造10階建て共同住宅の張問方向を対象 に、2次元有限要素法解析を実施し、解析結果と実被害の比較を行 い、以下の結論を得た。

・北方向載荷時の R=1.0%時のベースシア係数は 0.67 (D=0.55, F=1.35 となった場合の必要保有水平耐力に相当) であった。

・1階ピロティ柱の顕著な損傷や、2階梁の端部損傷およびスパン 中央の大きなたわみといった実被害を概ね良好に再現することが できた。1階のX3Y2柱とX4Y2柱の破壊性状の差は、せん断補 強筋量の差が一因として考えられる。また、2階枠梁端部では、

R₁=1/200rad 時点で軸力比にして 0.30 程度の圧縮軸力が作用する とともに、逆方向の載荷では早期に梁主筋が引張降伏する結果と なり、せん断補強筋間隔が広いこともあって、実被害のような梁端 損傷が生じやすい状況にあったと言える。

・2 階枠梁の断面形状と 2 階壁縦筋量はピロティ架構の耐力向上 に与える影響が大きく,例えば,2 階枠梁を剛としたモデルでは最 大耐力が元の架構の1.26 倍となった。

(2) 被害事例 B(柱梁接合部に被害があった消防訓練棟(1981年)以降に設計))

1) 建築物概要

本建築物は1998年に熊本県上益城郡益城町に建設された地上5 階建てのRC造庁舎建築物である。梁間方向は5.4m スパン,桁行 方向は1~2階が11.7m スパン, 3~5階が5.4m スパンであり, 3~5 階がセットバックし4本柱で構成された建築物である。建築物の 伏図を図1,2に、軸組図を図3~7に示す。基礎形式は独立基礎で ある。また材料強度は、コンクリートが210kg/cm²で、鉄筋は径 がD10-D19、鋼種はSD295、345である。本建築物はルート3で 設計されており、保有水平耐力計算が行われている。壁の配置によ り、2および3層のFesの値が、また1、2層のDsの値が大きい。

2) 被害状況および被災度区分判定結果 1)

本建築物は,2016年4月14日及び4月16日の熊本地震(以後,前者を前震,後者を本震と称する)によって被災し,4月19日に解体された建築物である。

被災後に撮影された写真から得られた被害状況について述べる。 前震直後,3階柱梁接合部のコンクリートが剥落し,内部鉄筋が露 出した。また,一部の柱主筋で座屈が確認された。3階の柱脚や柱 頭,4階の大梁でもコンクリートの剥落が見られたが,鉄筋が露出 する程ではなかった。本震において,当該建築物が道路側である西 方向に大きく傾き,余震により残留変形がさらに増大した。

変形の様子から 3~4 階で中間層崩壊である部分崩壊形が形成 されたと考えられ,4階の柱梁接合部には多数のひび割れが発生し ていた。被災写真を**写真1~11**に示す。

現行の被災度区分判定基準²⁾に従い,被害が最も大きく,本震 時に大きな残留変形が生じた3階の東西方向(X方向)について, 部材損傷度の判定を行った。図8に判定した柱の損傷度を示す。 なお,上下の柱梁接合部や大梁の損傷が大きい場合には,これらの 損傷度を柱の損傷度に置き換えた。Xa1Ya2柱では3階柱梁接合 部の破壊により,柱主筋の座屈が見られたため,損傷度をV(写真 2)とした。Xa2Ya2柱では柱脚においてコンクリートの剥落は見 られるものの,鉄筋の破断や座屈は確認できないため,損傷度をIV (写真3)とした。Xa1Ya1柱, Xa2Ya1柱は,柱頭や柱に取り付

写真 1 前震後の被害 (Ya2 構面)

写真 5 本震後の被害 (Ya2 構面)

写真 9 本震後の被害 (Ya1 構面)

写真 2 前震後の3階柱梁接合 部周辺の損傷(Ya2構面, A)

写真 6 本震後の3階柱脚部の 損傷(Ya2構面)

写真 10 本震後の4階柱梁接 合部の損傷(Ya1構面, D)

く 4 階の大梁においてカバーコンクリートの剥落が見られたが、 剥落の範囲が限定的であるため、損傷度をⅢ(写真 4)とした。

3 階の各柱を被災度区分判定の「曲げ柱」に分類したところ,耐 震性能残存率は R=30(%)となった。従って、当該建築物の前震後 の被災度は「大破」となる。また、本検討における解析結果の比較 対象とするものが実際の被災写真のみであるため、実際の被災写 真を基に簡易的な損傷図を図9 に示す。コンクリート剥落程度以 上の損傷を赤丸で、柱梁接合部の損傷位置を青丸で示す。

3) 解析概要

(a) 解析概要

対象建築物のモデル化にあたり,解析プログラムは株式会社構 造システムのSNAP ver.6⁴⁾を用い,静的解析及び動的解析を行う。 静的解析は荷重増分による非線形静的解析を行い,荷重分布はAi 分布に基づく外力分布を使用する。載荷方向は,X方向とY方向

写真3 前震後の3階柱脚 の損傷(Ya2構面,B)

写真 4 前震後の4階大梁 の損傷(Ya1 構面, C)

写真 7 本震後の被害 (Ya2 構面)

写真 11 本震後の5 階柱 梁接合部の損傷 (Ya1 構面, E)

写真 8 本震後の3階部分 の損傷(Ya2構面)

図8 前震後の部材損傷度 判定結果(3 階)

とし、最大層間変形角が4%となる時点まで載荷を行った。

動的解析では、熊本地震の前震、本震および2波連続の3つの 地震波を使用する。前震、本震のデータは本建築物に最も近接した 地点である KiK-NET 益城³⁾のデータを使用する。また、解析で 使用する減衰は、初期剛性比例型の2%とする。

(b) 建築物のモデル化

以下の5種類の建築物モデルについて検討を行う。

①基本モデル01:部材を全て単軸ばねでモデル化し、接合部耐力・ 変動軸力は考慮していない建築物モデル。

②基本モデル01 (マルチスプリング):基本モデル01の曲げの単 軸ばねをマルチスプリングに変更したモデル。変動軸力を算出す るために使用する。(静的解析のみ実施)

③基本モデル02:基本モデル01 (マルチスプリング) にて最大層 間変形角 1/25 時点の変動軸力を算定し、その変動軸力を考慮して

柱部材の耐力を決定したモデル。

④接合部耐力考慮モデル 01:基本モデル 01 から,柱梁接合部の 損傷が激しい箇所に接続される柱梁の曲げばねのモデル化につい て,「Dtri型」から「Slip型」に変更し,かつ柱梁接合部の降伏強 度に応じて柱梁の終局曲げ強度を低減したモデル。

⑤接合部耐力考慮モデル 02:基本モデル 02 から、柱梁接合部の 損傷が激しい箇所に接続される柱梁の曲げばねのモデル化につい て、「Dtri型」から「Slip型」に変更し、かつ柱梁接合部の降伏強 度に応じて柱梁の終局曲げ強度を低減したモデル。

なお, 接合部耐力考慮モデル01 および02 では, 図10 において 赤丸で囲まれた12 箇所の柱梁接合部を検討対象とする。実際に耐 力低下させた部材の端部を青点にて示す。柱, 梁が終局強度に達す る以前に柱梁接合部が降伏する場合は, 柱梁接合部降伏破壊時の 節点モーメント(以後, Mj)を算定⁵⁰し, 静的非線形増分解析の 最大耐力時の部材の曲げモーメント分布を用いて, 節点モーメン トが Mj に到達する場合の柱梁の危険断面位置でのモーメントの 値を, 柱や梁の曲げ終局強度に用いる。実際に耐力低下させた部材 の端部を青点にて示す。

また本建築物の壁について、開口周比が 0.4 以上の開口を持つ 壁については袖壁等の非耐力壁としてモデル化し、開口がない、ま たは開口周比が 0.4 以下の壁については無開口または有開口耐力 壁としてモデル化する。図10に、非耐力壁としてモデル化を行う 壁を緑色で、耐力壁としてモデル化を行う壁を橙色で示す。

(c) 部材の骨格曲線化手法

部材の剛性・耐力を算定し、各ばねの骨格曲線を決定する。構造 部材の剛性・耐力算定は、技術基準解説書⁶⁾(以下、黄本式), RC 規準⁷⁾を用いる。部材は線材で単軸ばねによりモデル化し、曲げ・ せん断・軸変形を考慮し、曲げばね(柱頭・柱脚)・せん断ばね・ 軸ばねを有する。

部材は線材で単軸ばねを用いてモデル化し、曲げ・せん断・軸変 形を考慮し、曲げばね(柱頭・柱脚)・せん断ばね・軸ばねを有す る。袖壁付き柱や腰壁垂れ壁付き梁の場合、1本の柱または梁とし てモデル化を行う。耐震壁のモデル化では3本柱置換モデルを用 いる。なお、中央位置の線材モデルの曲げばね・軸ばねは、側柱の 効果を考慮せず壁板だけの効果を考慮し、せん断ばねについては 側柱の効果を考慮して剛性・耐力を算定するモデルである。

梁に付帯するスラブの曲げ剛性・ひび割れ強度の算定については、RC規準⁷¹の式を用いる。曲げ終局強度については、片側につき 1m を考慮した。

全部材はひび割れによる剛性低下を考慮し、曲げ・せん断ばねの

骨格曲線をトリリニア型とし、剛性・耐力をそれぞれ算定し、それ に基づき各ばねの骨格曲線を決定した。また、除荷勾配について は、除荷時の変形を終局時の変形で除した値を 0.4 べき乗したも のを用いる。なお、本検討では耐力低下を考慮していない。

危険断面位置は全て,壁がある場合は壁フェイス,それ以外の場合は柱・梁のフェイス位置に設定し,節点からフェイス位置までを 剛域として簡易的に部材剛性を評価した。有開口耐力壁については、開口の影響を考慮するために、せん断剛性及びせん断耐力について,それぞれの低減係数を乗じて剛性・耐力の算定を行う。

またモデル02において使用するトリリニアスリップ型とは、ト リリニアスケルトンカーブを持つスリップ型の単軸ばねモデルで ある⁴。

4) 解析結果

基本モデル01 (図11)と接合部耐力考慮モデル01 (図12),お よび接合部耐力考慮モデル01と接合部耐力考慮モデル02(図13) を比較する。まず全てのモデルにおいて、1、2層の応答は当該階 にある耐力壁の効果により極めて小さく抑えられている。基本モ

図 9 被害写真に基づく損傷分布 (A

h布 (A~E は写真に対応)

図 10 柱梁接合部検討箇所と壁のモデル化(Ya1, 2構面)

図 12 接合部耐力考慮モデル01の 最大応答値

図 13 接合部耐力考慮モデル 02 の

最大応答値

デル01と接合部耐力考慮モデル01の比較から,接合部耐力の影響を確認できる。接合部耐力を考慮したモデルの最大応答は基本 モデルを比べ3倍近く大きく,特に3層では接合部耐力の影響が 大きい。また,接合部耐力考慮モデル01と02を比較すると,変 動軸力の影響を確認できる。変動軸力を考慮したモデルの最大応 答が大幅に増加し,特に4層では25倍程度の増加が確認できる。

次に、動的解析結果と実被害状況を比較し、建築物のモデル化の 妥当性を検証する。接合部耐力考慮モデル02の各層最大層間変形 角を見ると損傷の激しい3,4層で3%を超える応答が確認できる。 実被害においても目視で確認できる程度の大きな応答があり、概 ね傾向を捉えられている。

また、図14に接合部耐力考慮モデル02のYa1構面とYa2構面 のヒンジ状態図を示す。Ya1構面の4層に損傷が見られるものの、 Ya2構面では実損傷(図9)との概ね整合性が確認でき、最大応答 及び建築物の損傷の観点から、モデル化が妥当であると言える。

5) まとめと課題

本研究では、熊本県益城町にあった RC 造 5 階建て庁舎建築物 を対象に、建築物のモデル化を行い、解析結果と実被害の比較を行 い、以下の結論を得た。

・基本モデルと接合部耐力考慮モデル01の比較から,接合部耐力 を考慮したモデルの最大応答は基本モデルに対して5倍程度大き く,特に3層でその影響が大きいことから,本建築物における接 合部耐力が最大応答に与える影響の大きさを確認できる。

・接合部耐力考慮モデル01と02の比較から、変動軸力を考慮し たモデル02の応答が大幅に増加し、特に3層では1.6倍以上増加 していることから、本建築物における変動軸力が最大応答に与え る影響の大きさを確認できる。

図14 接合部耐力考慮モデル02 ヒンジ状態図

・動的解析結果と実被害状況との比較より,接合部耐力考慮モデ ル02の各層最大層間変形角を見ると損傷の激しい3層で1/25を 近く応答が確認できる。実被害においても目視で確認できる程度 の大きな応答があり,3層部分が大きく変形する傾向を捉えられて いる。また、ヒンジ状態図の比較より,被害の大きかった Ya2構 面は実損傷との概ねの整合性が確認でき、本モデルが実被害の特 徴を概ね捉えているものと思われる。

(3) 被害事例 C (杭基礎に被害があった庁舎 (耐震補強)) $^{1, 2)}$

1) 建築物概要

対象とする建築物は、熊本県上益城郡益城町にあり、1980年に 建設された。本建築物は桁行方向9スパン、張間方向4スパンのRC 造の地上3階,塔屋1階の庁舎建築物(図1参照)である。 2014年 に作成された耐震改修計算書によると、要求性能であるIsOが0.70 と設定され、無補強時のX方向(長手方向)の1,2階のIsが0.39, 0.67,Y方向の1階のIsが0.31でNG判定である。なおSD指標は偏 心していることにより両方向とも0.8程度,F値は両方向とも1.0, T指標は0.98としてIsが算定されている。それに対して南側のY0構 面の1,2層にプレキャスト外フレームによる補強および北側と東 側耐震壁の新設によって強度と偏心の改善が図られ、かつ北側X方 向の極脆性柱の腰壁に構造スリットを設けた改修がなされている。 その結果,NGだったX方向の1,2階,およびY方向の1階のIsは、 0.73,0.76,0.74と改善されている。また不同沈下に対する調査も 実施され、最大で15mm程度で目立った沈下は確認されていない。

2) 損傷調査計画

ここで示す調査は2018年2月から5月までに実施した。

(a) 目視によるひび割れ、浮き剝落損傷調査計画

目視調査の計測は2班に分かれて実施した。

A 班は各階の壁を調査した後に、1 階柱をできるだけ多く調査 することとし、FL から高さ 2000mm までを計測範囲とした。ひ び割れ性状及びひび割れ幅計測位置を記録するため、マジックペ ンを用いて部材に直接ひび割れを記入する。次にひび割れ幅につ いては、各部材の曲げとせん断の最大ひび割れ幅を計測しその値 を記録する。幅の計測は、クラックスケールを用いて目視により 行う。但し、ひび割れを目視確認でき、かつ0.05mm 未満のひ び割れの場合はひび割れ幅を0.00mm と表記する。また1本の ひび割れの中で最大ひび割れ幅を計測した点にはひび割れと直交 するよう線を引き、後に最大ひび割れ幅の計測位置が写真から判 別できるようにした。続いて、1階の壁(1CW3-5)及び柱

(1C1-8) に対して OHP シートを用いてひび割れ長さ形状を計 測した。浮き・剥落の計測は損傷の大きい壁1部材を対象とし OHP シートを用いて計測した。B 班は、建築物の被災度区分判 定を実施することを目的として全層の柱と壁および大梁の調査を 実施した。その際、調査する部材数が多く、調査時間は限られて いたため、損傷の小さい部材1本にかける時間を極力短縮して調 査を行った。1階の壁についてほぼ両者が調査し、柱については A 班が B 班の半分程度を調査した。

(b) 高解像度写真計測による損傷調査計画

本計測においてひび割れ計測用に使用したカメラの仕様は撮像 素子:35mm フルサイズ 有効画素数:5,060 万画素,記録画素 数:8,688×5,792 である。一方,浮き剥落用に使用したものは, 撮像素子:APS-C サイズ (23.2 x 15.4mm) 有効画素数:2,010 万画素,記録画素数:5,456×3,632 である。

またひび割れの撮影位置として、撮影対象上での分解能が 0.05mmとなるよう、対象から約1m離れた位置から、85mmレ ンズを用いて撮影した。浮き剥落の奥行きを捉えるために、斜め方

図1 対象建築物平面図

写真1 撮影状況(壁面)

向等様々な位置から撮影する必要がある。本撮影では、47箇所から撮影した。その一例を**写真1**に示す。

(c) 地上型レーザースキャナーによる損傷調査計画

地上レーザースキャナーは測定誤差が±5mm(確度±3mm),測 定挙可能距離は 0.5~800m,計測レートは最大 50 万点/秒の機能 を有する機器を用い,計測情報として対象物の座標値,表面の反射 強度,色情報を取得できる。本調査では,建築物外周部に加え,建 築物内においても計測を実施し,建築物や柱部材の残留傾斜や室 内床面の傾斜を計測する計画とした。建築物内の計測は,調査対象 である柱部材や床面が欠損なく十分な点密度で計測できるよう,1 階 49 地点,2階 37 地点,3階 48 地点に移動しながら地上型レー ザースキャナーを設置し,1日間計測を行った。またそれぞれの計 測地点からの主要な計測対象において,1平方 cm 当たり少なくと も数点の計測点が含まれるよう,計測点群の解像度を計測機から 10mの距離で 8mm 程度となる設定とした。

(d) 微動計による損傷調査計画

建築物内に配置した微動計およびデータロガー,それらの配線 計画を示す。なお図は簡単のため耐震補強前の状態を記載してい る。図に示すとおり、微動計は地表面(GL),1FL,RFLに設置 し、データロガーは2FLに設置した。また微動計測はX,Yそれぞ れの方向で計測した。 測定はサンプリング 200Hz, 各 20 分実施 した。

(e) コンクリートコアおよび鉄筋の材料試験片の採取計画

ここまでに示した上記調査が終了した後に、構造部材よりコン クリートコアと鉄筋の採取を行った。コンクリートを採取する対 象部材は、各階既存柱および1階の既存壁・新設補強壁、並びに補 強フレームの柱、2階の補強フレームの梁、既存基礎梁、フーチン グおよび補強フレーム基礎梁である。一方、鉄筋を採取する部材 は、1階の既存柱および補強フレームの柱の主筋とせん断補強筋、 既存壁および新設補強壁の壁筋、3階梁の主筋をそれぞれ採取した。

(f) 基礎構造の掘削による調査計画

基礎構造の地震被害の把握を目的として、上部構造を全て解体 した後に基礎フーチング周辺の土砂を掘削し、2018年5月に基礎構 造の損傷調査を行った。今回は、調査では基礎フーチングの下の土 砂も掘削を行い、杭頭部の損傷が判断できるように杭頭部から約 1.0m下まで掘削した。掘削を実施したのは21箇所の基礎フーチン グの周辺であり、この基礎フーチングに①~②の名前を付けた。 Y1~Y4通りの既存建築物の基礎フーチングは北側から掘削し、 Y0通りの補強フレーム側は南側から掘削した。また、調査した27 本の杭の位置とその番号を図2に示す。

また,今回調査した基礎フーチングの一部では,基礎フーチング や基礎梁と地盤との間に隙間が見られた。これは地震によって地 盤が沈下したためと考えられる。計測出来た基礎フーチングや基 礎梁と地盤との隙間量より,南側基礎フーチング①,③,⑦,④に おける基礎フーチングと地盤との隙間が大きく,これは基礎構造 物全体が北に向かって傾斜している傾向と一致していた。

3) 損傷調査結果

(a) 目視によるひび割れ, 浮き剝落損傷調査結果

両班で実施した調査結果とその比較を図3で行う。図より、同 一部材で異なる調査結果であることが分かる。その理由として、 1)同じひび割れを計測しているが計測誤差がある、2)調査Aの調 査高さ内で異なるひび割れを計測した、3)調査Aの調査高さ外 で異なるひび割れを計測した、4)値が同じでも異なるひび割れを 計測している可能性や、5)どちらか一方のみしか調査できていな いケースもあることが挙げられ、上記理由の番号も図3に併記す る。次にOHPシートにて計測した壁部材(1CW3-5)のひび割 れ図を図4に示す。また、1CW3-5のOHP計測範囲よりも高い 位置に発生していた浮き剥落の図及びその面積を以下に示す。ま た図4に示す1CW3-5の赤ハッチ部分の計測データを損失したた め、それ以外の計測結果を示す。

(b)高解像度写真計測による損傷調査結果

(b-1)ひび割れを撮影した写真の処理方法と幅の算定

撮影した画像を正対かつスケールを合わせた画像(正規化画像) に変換するためには、撮影対象の寸法が必要である。寸法は、現地

図4 1階壁のひび割れ図

でメジャーを当てて計測することで取得した。本撮影では、30%程 度オーバーラップさせながら分割して撮影している。正規化によ ってそれぞれの分割画像が同じ座標系となるため、正規化画像を 重ね合わせた上で重複した撮影範囲の中間付近で切り分けること で画像の接合が可能である。

正規化した画像上のひび割れのトレースとひび割れ幅の判読を 行う。トレースは、CAD ソフト等を使用するのが効率的である。 正規化画像は画像自体に座標情報を持っているため、画像上のひ び割れ幅の画素数と分解能から逆算することで、ひび割れ幅を算 定することができる。具体的には、画像データ上に上記スケールを 計算した仮想的なクラックスケールを重畳表示することでひび割 れ幅を判読することができる。ひび割れをトレースした結果を図5 に示す。柱のひび割れトレースにおいて、0.05mm以下のひび割れ を取得できていることが読み取れる。また、現状ではひび割れの幅 の判読単位は、それを細分化することで補修材を充填するための 補修計画も作成できると考えているが詳細は今後の課題である。

(b-2) 浮き剝落を撮影した写真の処理方法と面積の算定

撮影した写真を Pix4D Mapper で合成し、三次元モデルを作成 した。Pix4D Mapper は SfM (Structure from Motion)³⁻⁵⁾と呼ばれ る複数画像からカメラの位置姿勢と三次元モデルを復元する技術 を使用したソフトであり、近年様々な場面で利用されている。作成 した三次元モデルから、奥行き方向の値を持った画像である DSM (Digital Surface Model)を作成することで、浮き・剥落箇所を抽出 することができる。画像上で表面が欠けている箇所や亀裂が入っ ている箇所の位置関係を踏まえ、奥行方向が 0.53mm 以上を浮き、 -1.51mm 以下を剥落範囲として取得した。DSM 上での浮き剥落 の取得位置を図 6 に示す。図より剝落中心部から浮きの部分まで の 3 次元的に損傷が分布している事が分かる。それと実際の被害 写真と比較したものが図 7 である。図より概ね損傷状態を把握で きていることが分かる。

(c) 地上型レーザースキャナーによる損傷調査結果

(c-1) 床面の沈下性状

図8に2階床上面で計測された点群情報を等高線表示した結果を 示す。図の上部が北の方角を示す。各階の床面で一番高い位置(Y1 構面X6-7間)を基準高さとし、それを緑色、10cm低い部分を黄色、 20cm低い部分を赤色、30cm低い部分を紫色で、逆に高い部分は青 入りでグラデーション表示している。それ以外の色の部分は点群 による計測ができていない部分である。なお1cmごとに白色の等

高線を示す。図より北側に向かって床が傾斜している事が分かる。

特に北西部の床位置が下がっており、前述の最高高さ位置に比 ベ、その相対差は約233mmと大きい。今回の調査では地上型レ ーザースキャナーにより各階の床全面も詳細に3次元計測できた ことで、限られた個別部位の代表的な沈下量ではなく、床面とし ての精細な沈下性状を得ることができた。

(c-2) 柱の傾斜と沈下性状

柱の傾斜は、次の手順で求めた。(1) 計測点群から各柱の上部と

下部の表面のデータを取得し、両者の南北方向および東西方向の 水平変位量をそれぞれ計測した。(2)前述の変位量を、使用した上 部と下部のデータの中心距離(高低差)で除すことで柱の傾斜を求 めた。(3) この手順で柱の傾きを計測するためには、計測点群を利 用する柱の上部と下部が同一形状(水平断面)で垂直に形成されて いるとともに、表面形状が明確に取得されている必要があるため、 それに適した柱頭柱脚部の点群を取得した。また計測値の精度と 安定性を高めるために、上部と下部の距離をできるだけ大きくと

図8 2階床レベルの高低差を示す観測結果(図の上部が北(Y4構面)を示す)

構面	階	X1	X2	X3	X4	X5	X6	X7	X8	X9	X10
	3F	-	1/203	1/212	1/466	1/291	1/244	1/291	1/185	1/146	1/194
V1	2F	-	1/151	1/172	1/187	1/223	1/166	1/233	1/133	1/130	1/145
Ϋ́	1F	-	1/338	1/198	1/152	1/223	1/203	1/181	1/147	1/147	1/102
	平均	-	1/207	1/192	1/213	1/242	1/200	1/226	1/152	1/141	1/137
	3F	-	1/168	1/223	1/139	1/114	1/214	1/130	1/141	1/152	1/108
¥2	2F	-	1/190	1/146	1/181	1/105	1/120	1/106	1/162	1/114	1/123
۲Z	1F	-	1/187	1/166	1/152	1/117	1/131	1/114	1/131	1/142	1/142
	平均	-	1/181	1/173	1/155	1/112	1/145	1/116	1/144	1/134	1/123
	3F	1/276	1/141	1/168	1/179	1/132	1/173	1/230	1/212	1/161	1/151
VO	2F	1/216	1/265	0	1/175	1/173	1/143	1/152	1/146	1/112	1/107
13	1F	1/126	1/179	1/111	1/138	1/156	1/101	1/139	1/122	1/140	1/150
	平均	1/185	1/183	1/200	1/161	1/152	1/133	1/165	1/152	1/135	1/132
	3F	1/92	1/117	1/108	1/116	1/105	1/121	1/128	1/140	1/81	1/99
VA	2F	1/104	1/146	1/147	1/160	1/156	1/189	1/428	1/155	1/156	1/82
¥4	1F	1/187	1/142	1/146	1/99	1/123	1/166	1/123	1/124	1/111	1/137
	平均	1/116	1/134	1/131	1/120	1/125	1/153	1/164	1/138	1/108	1/101

表1 柱の傾斜角(南北方向)

れるように配慮し、上部と下部の点群の中心距離は2100mmに統 ーしてデータの取得と処理を行った。表1に各柱の南北方向の傾斜 角を示す。なお正の値は北に傾斜している事を示しており、有意な 傾きが計測されなかった1本を除き、全ての柱が北方向に傾斜して いた。表より北側ほど柱の傾斜が大きい傾向にあることが分かる。 なお東西方向も同様に柱の傾斜角を算出した。それらはこれらの 値よりかなり小さい値であるとともに、傾斜方向が東方向および 西方向のものが混在する状況であった。

図9に1Fベランダの天井部分の南北方向の梁に注目してY0(補 強構面),Y1(既存の南側構面)の各構面での相対沈下量を示す。 YCは短スパン梁中央位置の値である。図よりいずれの構面も西側 の柱の沈下量が大きいことが分かる。

図9 南側Y0, Y1構面の沈下量

(d) 微動計による損傷調査結果

建築物のX方向・Y方向の微動データとしては、建築物の両端に 配置されたセンサーの平均値を用いて、ARXモデルの同定結果よ り得られる系の一次固有周波数を表2に示す。地盤・建築物系の固 有周波数(2.5Hz程度)が建築物系の固有周波数(4.0Hz程度)よ りも顕著に小さいことから、基礎の地盤ばねが非常に弱いことが 分かる。このことと、地盤 – 建築物系の固有周波数における増幅 率が比較的小さい、すなわち減衰が大きいことより、基礎の剛性低 下と塑性化が激しいことが推察される。なお、ここで示した値は文 献^{6,7)}の調査結果と概ね一致している。

(e) コンクリートコアおよび鉄筋の材料試験片の採取結果

1階部分で採取したコンクリートの材料試験結果を表3に示す。 表より補強フレーム部の柱や新設補強した壁のコンクリート強度 が極めて高いことが分かる。

(f) 基礎構造の掘削による調査結果

調査した27本の杭のうち、代表的な被害について杭頭部の状況 を写真1~6に示す。既存建築物側は北側から、補強フレーム側は南 側から撮影した写真である。また、杭の被害状況の一覧を表4に示

表2	ARX	モデルによる	1次固有周波数
----	-----	--------	---------

計測	情報	固有周波数	増幅率
		(Hz)	
GL入力	Y 方向	2.6	3.4
RF 出力	X 方向	2.6	3.0
1F 入力	Y 方向	4.2	7.6
RF 出力	X 方向	3.9	9.4

表3 コンクリートの圧縮試験結果

コア抜き位置	圧縮強度 (MPa)	コア抜き位置	圧縮強度 (MPa)
補強フレーム 1F柱	71.8	既存部 1F壁	24.4
補強フレーム 基礎梁	39.1	既存部 1F柱	29.8
補強部 基礎フーチング	38.4	既存部 基礎梁	34.2
補強フレーム 2F梁	46.7	既存部 基礎フーチング	34.6
新設補強 1F壁	51.1	既存部 2F柱	20.4
		既存部 3F柱	22.0

す。ただし、フーチングの残留水平移動量は基礎フーチングに残っ ている杭の跡と、調査時の杭とのずれ量を南北方向と東西方向の 計測した値を用いている(写真1)。また、杭のコンクリートが剥落 し鉛直方向にもずれていることが確認された場合(写真2)は、そ の長さを杭頭剥落長さとした。また、鋼管杭が座屈している場合 (写真3)は、座屈によってはらみだした距離を計測し、座屈によ って縮んだ長さを、杭座屈長さとした。杭の残留傾斜角度は、杭頭 部の破壊された部分を避けて、その下から下げ振りを当てて、南北 方向および東西方向の2方向について傾斜角度の測定を行った。

表に示すように, 北側構面の杭頭部の被害は少ないが, 南側構面 の杭頭部の被害が大きくなっていることがわかった。また,杭は全 て傾斜しており、特に東西方向には、①1を除くと全て西側方向に 傾いていた。傾斜角度は2.6%~13.7%である。写真4に示すように、 杭頭部のコンクリートの剥落が一部だった10-1の杭 (傾斜角:南に 3.9%) について, 杭頭端部から下に1.1m~1.7mの区間を追加で掘 削したところ、この部分の南側側面にコンクリートの圧壊が生じ ていた(写真5)。他の杭は杭頭部から下に1.0mまでしか掘削して いないためそれより下の被害は不明だが、10-1の杭と同様に杭の 傾斜角が大きいことから杭中間部で何らかの被害が発生している ことが推測できる。写真3に示すように、補強部の鋼管杭の杭頭部 に座屈が生じていることが分かった。また、補強部の鋼管杭の杭4 -1では、杭頭部がつぶれるような破壊が観察された。また、杭①-2 の杭のように杭とフーチングの間に残留水平移動とコンクリート の剥落が生じている杭もある一方で、杭9-1の杭(写真1)のよう に残留沈下はほとんどないが、水平に大きくずれた杭もあった。

一連の基礎構造物調査の後、基礎構造物が解体された。写真6は、 基礎フーチング⑩の解体時の写真である。基礎フーチング⑩を地 盤から引きはがした後、**写真 6**のように基礎フーチング⑩に設置

されていた杭の埋め込み深さを計測した。その結果,埋め込み深さ が 150mm 程度であった。

		DC 4回 ++	DC 4回 ++				フーラ	チング	ᅷᇏᆁᄷ	长应员	ᅶᆂᆍᆇᇏᇵᄮᆂ	M & # *2
杭番号	鋼管座屈	10 则11/1	FU動材 広団	コンクリート制茨	杭径	肉厚	残留水平	移動量 ^{※1}	11. 切り 加り 加り 加り 切り かくしょう しんしょう しんしょう しんしょう しんしょう かんしょう しんしょう しんしょ しんしょ	加座出	机残留限	科用度"~~
		14X 12/1	庄凪	「水」行			南北方向	東西方向	КC	КC	南北方向	東西方向
1-1	/	—	一部	杭頭全周	400mm	65mm	45mm	35mm	ほぼ0mm	/	-1.0%	3.4%
1)-2	/	ほぼ全部	—	杭頭全周	未計測	未計測	50mm	50mm	160mm	/	-1.0%	3.8%
<u>(2</u>)-1	/	ほぼ全部	—	杭頭全周	未計測	70mm	20mm	100mm	100mm	/	0.0%	3.0%
3-1	/	ほぼ全部	_	杭頭全周	400mm	未計測	ほぼOmm	ほぼOmm	100mm	/	-1.6%	2.9%
④ -1	/	—	ほぼ全部	杭頭全周	400mm	未計測	60mm	ほぼOmm	ほぼOmm	/	-2.1%	8.0%
<u>(5)</u> –1	/	_		一部	400mm	未計測	ほぼOmm	ほぼOmm	ほぼOmm	/	-1.7%	7.6%
6-1		—	—	—	400mm	未計測	ほぼOmm	ほぼOmm	ほぼOmm	/	-4.3%	8.0%
6)-2	/	—	—	_	未計測	未計測	ほぼOmm	ほぼOmm	ほぼOmm	/	-3.0%	5.0%
⑦-1		ほぼ全部	一部	杭頭全周	未計測	65mm	90mm	-50mm	ほぼOmm	/	-3.7%	6.4%
⑦-2	/	ほぼ全部	一部	杭頭全周	未計測	未計測	90mm	-80mm	ほぼOmm	/	不明	不明
8-1		—	—	一部	未計測	未計測	ほぼOmm	ほぼOmm	ほぼOmm	/	-1.4%	4.1%
(9)-1	/	ほぼ全部	一部	杭頭全周	未計測	未計測	60mm	-190mm	ほぼOmm	/	-1.9%	13.7%
10-1		—	ほぼ全部	杭頭全周	未計測	65mm	ほぼOmm	ほぼOmm	ほぼOmm	/	2.3%	5.4%
1)-1	/	—	—	一部	未計測	未計測	ほぼOmm	ほぼOmm	ほぼOmm	/	-1.9%	-2.0%
12-1	/	_	ほぼ全部	杭頭全周	400mm	未計測	ほぼOmm	ほぼOmm	ほぼOmm	/	1.3%	5.7%
12-2	/		—	_	400mm	未計測	ほぼOmm	ほぼOmm	ほぼOmm	/	-2.9%	7.1%
(13)-1	ほぼ全部				318mm	未計測	ほぼOmm	ほぼOmm		20mm	0.9%	4.0%
13-2	一部				318mm	未計測	ほぼOmm	ほぼOmm		ほぼOmm	不明	不明
1)-1	ほぼ全部				未計測	未計測	ほぼOmm	ほぼOmm		ほぼOmm	不明	不明
14-2	ほぼ全部				未計測	未計測	ほぼOmm	ほぼOmm		60mm	-2.4%	4.4%
15-1		—	—		400mm	未計測	ほぼOmm	ほぼOmm	ほぼOmm	/	-2.0%	7.9%
16-1		_	—	一部	400mm	未計測	ほぼOmm	ほぼOmm	ほぼOmm		-3.6%	6.7%
1)-1		—	—	一部	未計測	未計測	ほぼOmm	ほぼOmm	ほぼOmm		-1.0%	2.3%
18-1		_	_	一部	未計測	未計測	ほぼOmm	ほぼOmm	ほぼOmm		0.7%	2.6%
19-1		—	ほぼ全部	杭頭全周	未計測	未計測	ほぼOmm	ほぼOmm	ほぼOmm		1.7%	2.6%
20-1		_	—	一部	未計測	未計測	ほぼOmm	ほぼOmm	ほぼOmm		2.9%	4.4%
21)-1	/	—	—	一部	未計測	未計測	ほぼOmm	ほぼOmm	ほぼOmm	/	-1.4%	7.1%
-	※1、枯し	マ対して 其碑	マーチンガボ	业 (またけ面)	古向に動	ノ坦ムな正の	の値レオス	※2. 培丽 ⁵	8.お业 (またけ	m) 古向に傾	創1 た担合た	正の値レオス

表4 杭の被害状況一覧

写真1 杭9-1の杭頭部の状況

写真4 杭16-1の杭頭部の状況

写真2 杭1-2の杭頭部の状況

写真3 杭⑭-2の杭頭部の状況

写真6 フーチング⑩の杭の埋め込み深さ

各構面における基礎構造の変形状況について,図10~13に示す。 ただし、これらの図は模式図のため正確なサイズで書いているわ けではない。図中の点線は、沈下量を計測した際の基準地点の高さ を示している。図中には、杭の残留傾斜角、杭の残留めり込み量、 基礎フーチングの相対沈下量、フーチングと杭との相対水平移動 量を示している。記載がない場合はほぼ 0mm の場合である。ま た、杭頭部のコンクリート剥落の程度によって分類し、杭の色を変 えている。赤は杭頭全周のコンクリート剥落が見られたもの、黄色 は杭頭の一部にコンクリート剥落が見られたもの,青は杭頭にコ ンクリート剥落が見られなかったものである。

ここで示した沈下の傾向は、地上型レーザースキャナーで測定 し算定した床面の鉛直変位分布との相関性が高いことが分かる。 4) まとめ

2016年熊本地震により、震度7の揺れを2回受けたRC造庁舎建築物の損傷調査方法を示し、そこで得られた知見を以下に示す。 ・2班によるコンクリート構造部材の目視調査を実施し、それらの

計測結果とその計測結果の違いについて示した。

・高解像度カメラで撮影された情報を用いて、コンクリート構造 部材の損傷を目視調査と比較したところ、コンクリートの浮きに ついては目視で調査した結果より的確な調査ができる可能性があ ることを示し、かつ浮きや剥落は3次元情報として分析できること を示した。

・3次元レーザースキャナーを用いて計測した結果,建築物全体の 傾斜や床面の沈下性状並びに柱部材の傾斜・沈下性状を示した。

・北側構面杭の杭頭部の被害は少ないが、南側構面杭の杭頭部の 被害が大きい。また杭は全て傾斜しており、特に多くが西側方向に 傾いていた。杭の傾斜角が大きいことから杭中間部で何らかの被 害が発生していることが推測できる.。

以上の検討から,対象建築物の基礎構造は杭の被害(杭頭部また は杭中間部)が原因で,北方向に向かって大きく傾いたということ が分かった。

参考文献

IV-1)

- 谷昌典,松葉悠剛,井戸硲勇樹,向井智久,坂下雅信,西山峰広:2016 年熊本地震で被災したピロティ形式 RC 造集合住宅の有限要素解析, 日本建築学会技術報告集第 25 巻第 59 号, pp.171-176, 2019.2
- 国土交通省国土技術政策総合研究所,国立研究開発法人建築研究所監修:2015年版建築物の構造関係技術基準解説書,2015
- 3) 国立研究開発法人建築研究所:平成28年(2016年) 熊本地震建築物 被害調査報告(速報),建築研究資料 No.173, 2016.9
- 4) 日本建築防災協会:2015 年改訂版 再使用の可能性を判定し、復旧するための震災建築物の被災度区分判定基準および復旧技術指針、2015
- 5) 伊藤忠テクノソリューションズ(株): FINAL/V11
- 6) 長沼一洋:三軸応力下のコンクリートの応力~ひずみ関係,日本建築
 学会構造系論文集,第474号,pp.163-170,1995.8
- H. Nakamura, T. Higai : Compressive Fracture Energy and Fracture Zone Length of Concrete, Seminar on Post-peak Behavior of RC Structures Subjected to Seismic Load, JCI-C51E, Vol.2, pp.259-272, 1999.10
- 出雲淳一ほか:面内力を受ける鉄筋コンクリート板要素の解析モデル、 コンクリート工学論文, Vol.25, No.9, pp.107-120, 1987.9
- Kupfer, H.B., Gerstle, K.H. : Behavior of Concrete under Biaxial Stress, Journal of the Engineering Mechanics Division, ASCE, Vol.99, No.EM4, pp.853-866, 1973.8
- Al-Mahaidi, R.S.H. : Nonlinear Finite Element Analysis of Reinforced Concrete Deep Members, Report 79-1, Dep.of Structural Engineering, Cornell Univ.,

1979.1

- Ciampi,V., et al. : Analytical Model for Concrete Anchorages of Reinforcing Bars Under Generalized Excitations, Report No. UCB/EERC-82/23, Univ. of California, Berkeley, Nov., 1982
- 12) 井戸硲勇樹ほか:ピロティ構造の曲げ壁を支持する枠梁の負担応力評
 価、日本建築学会学術講演集(関東),構造IV, pp.303-304, 2015.9

IV-2)

- 国土交通省国土技術政策総合研究所,国立研究開発法人建築研究所: 平成28年(2016年)熊本地震建築物被害調査報告(速報),国土技術 政策総合研究所資料 No.929,建築研究資料 No.173,2016.9
- 一般財団法人 日本建築防災協会:震災建築物の被災度判定区分判定 基準および復旧技術指針,2015
- 3) 防災科学技術研究所強振観測 http://www.kyoshin.bosai.go.jp/kyoshin/
- 4) 株式会社 構造システム: SNAP ver.6 テクニカルマニュアル
- 5) 日本建築学会:鉄筋コンクリート構造保有水平耐力計算基準(案)・同 解説、2016
- 6) 建築物の構造関係技術基準解説書編集委員会:2015 年版建築物の構造
 関係技術基準解説書、2015
- 7) 日本建築学会:鉄筋コンクリート構造計算規準・同解説, 2010

IV-3)

- 国土技術政策総合研究所,建築研究所:平成23年(2011年)東北地 方太平洋沖地震被害調査報告,国土技術政策総合研究所資料第674 号,建築研究資料第136号,2012.3
- 渡邊秀和,向井智久,迫田丈志,村松大輔,金子治,成田修英:2016年 熊本地震により被災した庁舎の地震後継続使用性の考察,日本建築 学会技術報告集第24巻第57号,pp.673-678,2018.6
- Beardsley, P., Zisserman, A., and Murray, D.: Sequential Updating of Projective and Affine Structure from Motion, Int.J. of Computer Vision, Vol.23, No.3, pp.235-259, 1997.
- Tomasi, C., and Kanade, T.: Shape and Motion from Image Streams under Orthography: A Factorization Method, Int.J. of Computer Vision, Vol.9, No.2, pp.137-154, 1992.
- Pollefeys, M., Koch, R., Vergauwen, M., Deknuydt, A. and Gool,L.J.V.: Threedimentional Scene Reconstruction from Images, Proc.SPIE, Vol.2958, pp.215-226, 2000.
- 6) 護雅史:地震記録に基づく益城町役場の地盤-建物応答,第44回地盤 震動シンポジウム 2016 年 熊本地震で何か起きたか, pp.101-108, 2016
- 7) 丹裕也,護雅史,福和伸夫:2016年熊本地震で被災した低層RC造杭基 礎建物の非線形相互作用解析-常時微動計測結果に基づく検討-,日 本建築学会大会学術講演梗概集(2017),pp.765-766,2017

♥ 継続使用性を高めるための部材の耐震設計手法,耐震改修工法に関する検討

(1) UFC を利用した RC 造非耐力壁に対する耐震補強工法

東日本大震災や熊本地震においては、集合住宅の玄関周りの方 立壁, 庁舎建築物の開口周辺の非構造壁における被害が生じ, これ らの被害により建築物の継続使用性に支障をきたす事例が報告さ れている。建築物の地震後継続使用性を確保するために、 プレキャ ストの超高強度繊維補強コンクリート(以下, UFC)パネルを既 存躯体に接着する補強工法として提案されており、UFC パネルを 用いることで、損傷低減や構造性能改善に効果があることが分か っている1)。また、その補強方法は袖壁付き柱部材の袖壁部分に1 枚物のUFCパネルを貼付することで、袖壁付き柱部材の曲げ剛性 の増大、曲げ終局強度の上昇及び浮き剥落面積などの損傷を軽減 するという補強効果が確認されている。本論では、UFC パネルを 分割したり薄く軽量化したりと、施工合理化に向けた構造実験や 柱せいの2倍程度長い袖壁や、袖壁に小開口を有する部材を補強 対象とした実建築物への適用を意識した実験を行った。同時に UFC パネルのせん断破壊実験や UFC パネル補強と同等の補強効 果を得るための RC 補強量の検討を行った。本論ではそれらの実 験結果及び骨格曲線評価手法の提案を行う。

1) 袖壁付き柱部材に対する検討

(a) 試験体概要

本論で検討する試験体は計15体とし、補強対象となる無補強試 験体は4 種類 (CW2-S, CW2L-S, CW3-S, CW4-S) である。その 中でもパラメータの基準となる試験体が CW2-S である。CW2-S は 柱断面を450mm×450mm, 壁厚を80mm, 壁長を450mm, 壁縦筋 を160mm 間隔のシングル配筋, 壁横筋を85mm 間隔のシングル配 筋、袖壁端部の開口補強筋を 2-D10 とした。なお、壁横筋の先端 部は180°フックにより定着を確保した。既存袖壁付き柱の諸元を 表1に示す。CW2-S に対し、CW2L-S は袖壁長さを2 倍にしたも の、CW3-S は横筋量の減少と壁縦筋の径を増大させ高強度のもの にしたことによりせん断破壊を計画したもの、CW4-S は袖壁に小 開口を設けたものである。また、CW2-SF は無補強試験体である CW2-Sの載荷終了後に袖壁に配された縦筋を切断し、剥落したコ ンクリートをパネル補強に用いた無収縮モルタルとは異なる強度 のモルタルによって断面補修を行い、その上にUFC パネルで補強 した試験体である。また、一方の袖壁のみの脚部に幅 20mm のス リットを設けているため、その袖壁が圧縮される載荷では壁脚部 でUFC パネルのみが圧縮抵抗する。上記した補強対象試験体諸元 を表1に、試験体図を図1に示す。

UFC 補強方法について、CW2-SR1、CW3-SR1 は1 枚の UFC パネルによる補強とした。CW2L-SR1 は1 枚の UFC パネルだが、壁

表1 補強対象試験体諸元

図1 補強対象試験体配筋図

長さが柱せいの2倍であるCW2L-Sに端部から神壁長さの1/2の 範囲を補強した。そのため、他の補強試験体と異なり、補強材が柱 と連続しない。CW2-SR1Vは1枚のUFCパネルを鉛直方向に均 等に2分割したパネル形状である。CW2-SR2Vは水平方向5分割 したパネルを鉛直方向に均等に2分割し、計10分割したパネル形 状である。CW2-SR2T, CW2-SF, CW3-SR2 は水平方向に5分 割したパネル形状で CW2-SR2T のみ左右の袖壁に取り付ける UFC パネルの厚さが異なり、それぞれ 20mm 及び 10mm である。 なお、これ以外の UFC パネルの厚さは 30mm である。ただし CW2-SR1JはCW2-SR1に対して脚部のパネル厚さを厚くした試 験体であり、危険断面位置が壁脚となるよう、壁脚から710mmの 高さよりパネル厚さ徐々に厚くし、410mmの高さよりパネル厚さ が60mmとし、それ以降はその厚さとなるような形状とした。ま た、CW4-SR は水平方向に5分割し、かつ袖壁部と同様の小開口 を設けた形状のUFCによる補強とした。補強方法を図2に示す。 試験体の補強範囲は左右の袖壁の片面とし、補強試験体の共通項 目はパネルの分割目地厚さは10mmで、目地にはエポキシ樹脂を 充填する。スタブとパネルは厚さ20mmの無収縮モルタルによっ て接着した。既存部に使用した各種材料試験の結果及び補強に使 用したUFCパネルの諸元を表2に示す。

る試験体は逆対称とし、変位制御による正負交番繰返し載荷を行 った。上下スタブ間の水平変位をスタブ間の内法寸法 1700mm で 除した変形角を制御用の部材角 R とした。載荷履歴は、変位制御 により部材変形角(=柱頂部変形/柱内法高さ)1/800rad., 1/400rad., 1/200rad., 1/100rad., 1/50rad., 1/33rad.で, 1/800rad.を1サイクル, 1/400rad.と1/200rad.を2サイクル、1/100rad.を5サイクル、以降3 サイクルずつ行い,最後に1/20rad.の正載荷まで押し切った。また, 長期軸力は柱断面積に対し曲げ破壊型試験体では軸力比0.1、せん 断破壊型試験体では軸力比0.2となる荷重を作用した。また、南方 向載荷を正、北方向載荷を負とした。

試験体の損傷を定量的に評価・比較するため、コンクリートのひ ひ害れ幅,長さ,及び浮き・剥落範囲の計測を行った。ひび害れ幅 については各サイクルのピーク変形時及び除荷時を対象とした。 計測は各サイクルでひひ割れ幅の最も大きいものを代表として行 い、1本のひび割れに対して幅が最大となる位置での計測結果を記 録した。浮き・剥落については除荷時に OHP シートを用いて転写 する方法で記録した。また、CW2-S 試験体では 3D スキャナによ る損傷量計測も併せて行った。

試験体の破壊性状について概要を述べる。まず曲げ破壊型試験

体 CW2-S シリーズは CW2-SF を除く 5 体ともに開口補強筋, 壁

(c) 実験結果

(c-1) 破壊経過・荷重変形関係

(b) 加力計測計画

試験体名

W2-SR1 W2-SR2

既存部

CW3-SR0

補础部 CW4-5 CW4-SR

試験体名

CW2-S.CW2-SR1

CW2-SR1V.CW2-SR2

CW2-SR2T.CW2-SF

CW2-SR1J

CW2L-S, CW2L-SR1 CW4-S, CW4-SR

CW3-S, CW3-SR1

CW3-SR2, CW3-SR0

加力は曲げ破壊させる試験体は片持ち柱形式、せん断破壊させ

正縮強度割裂強度 ヤング係数

2.3 26.4

部位

壁筋

開口補強筋

柱帯筋

柱主筋

壁筋

開口補強筋

柱帯筋 柱主筋

壁横筋

柱帯筋

壁縱筋

開口補強筋

柱主筋

壁横筋

柱帯筋

壁縦筋

開口補強筋

壁斜め筋

柱主筋

29.3

26.9 28.1

25.6

24.8

26.1

鉄筋径

D10

D10

D19

D6

D10

D19

D6

D10

D6

D10

D19

D6

D10

D13

D10

D19

32.8 2.3

35.2 36.4 3.05

35.9 2.64

25.1 2.23

28.0 2.41

28.4 2.5

材料試験結果 表2

238.3

251.7

244

材種

SD295A

SD295/

SD245

SD295A

SD295A

SD245

SD295A

SD295A

SD295A

SD295A

SD345

SD295A

SD295A

SD490

SD490

SD345

圧縮強度 曲げ強度 ヤング係数

37.9

39.7

ヤング係数

182

173

179

183

177

183

165

179

165

171

165

179

178

169 (D6の鉄筋は2)

228 33.3

56.4

55.6

390

364

361

373

324

387

368

341

361

341

367

384

341

361

549

377

384

136.4

84.5

 $[N/mm^2]$

485

470

554

493

521

554

501

492

501

485

501

492

740

485

552

縦筋が降伏し、柱主筋の降伏と概ね同時に最大耐力に到達した。最 大耐力到達直前では、圧縮側袖壁の脚部圧壊が生じ、最大耐力到達 後には圧壊が進展することで耐力低下した。以上のことから、破壊 モードは全試験体共に曲げ破壊と判断した。各試験体の荷重変形 関係を図3に示す。UFCパネルにより袖壁補強試験体はCW2-SF を除く全試験体共通で最大耐力を迎えた後のR=1.0%にて圧縮側 の袖壁の圧壊が確認された。また無収縮モルタルが面外方向への 剥落が確認され、変形角が大きくなるにつれてそれらは進展した。 CW2-SF では R=0.25%にて正負共に圧縮側のパネル下の無収縮 モルタルの隅角部にわずかに亀裂を確認した。R=0.5%ではスリッ トを設けた壁が圧縮側となる際,パネル下の水平目地の無収縮モ ルタルの隅角部の亀裂が顕著となった。最大耐力到達後,R=1.0% ではパネル下の水平目地の無収縮モルタルの圧壊が進んだ。その 後,正側の部材角 R=2.0%付近で袖壁脚部の補修部がスタブに接 触し再び水平荷重が増加した。スリットを設けた壁が引張側とな る際は引張側袖壁の縦筋が存在しないため,終局強度は無補強試

験体に直接 UFC 補強を行った CW2-SR1 と同程度となった。

CW2-SR1Jは R=0.5% サイクルで袖壁端部に圧壊が発生し、袖 壁と柱の境界部に複数のせん断ひび割れが発生した。R=1.0%のサ イクルでは、UFC 補強部では無収縮モルタルの圧壊が発生し、袖 壁既存部では端部補強筋の座屈により袖壁脚部のコンクリートが 剥落し,最大耐力 Q=464.6kN を迎えた。その後,既存 RC 袖壁は 徐々に剥落が拡大したが、UFC パネルに関しては目立った損傷は 確認されず, 袖壁脚部の圧壊等から, 破壊モードは袖壁脚部の曲げ 圧縮破壊と判断した。図4にCW2-SR1JとCW2-SRのUFCパ ネルの負担せん断応力度の比較を示す。CW2-SR1 では、部材角 1.0%時にUFCパネルの損傷により、UFCの負担せん断応力度が 最大を迎え、その後部材角2.0%以降、パネルがせん断力を負担し ていないが、CW2-SR1J は部材角 1.0%以降も UFC パネルの損傷 が確認されず、UFCの負担せん断応力度が低下せず、部材角2.0% 時でも 1.0%時と同程度のせん断力を負担していることが確認で きる。このことから、脚部のパネル厚さが30mmの場合は、部材 角 1.0%で UFC パネルの損傷によって靭性能が低下したが、パネ ル厚さが 60mm の場合は, 部材角 1.0% でも UFC パネルが損傷せ ず、その後もせん断力を負担したため、耐力が低下せず靭性能が確 保されたものと考えられる。危険断面位置における補強パネルの 厚さは最大耐力には影響しないものの、最大耐力到達後の靱性能 に大きく影響することを確認した。

CW3-SR0 は既存 RC 袖壁に関しては、R=0.5%サイクルで壁小 ロの既存部一補強部間に鉛直方向のひび割れが、袖壁の柱との境 界部に複数のせん断ひび割れが発生し、R=1.0%で既存部コンクリ ートの剥落により最大耐力 Q=538.9kN を迎えた。その後、RC 壁 補強部はかぶりコンクリートに多少剥落が確認されたが、袖壁既 存部は端部補強筋が繰り返し載荷により、伸びと座屈を繰り返す 毎に袖壁脚部のコンクリートが剥落する領域が鉛直方向に拡大し、 袖壁脚部の剥落が大きく進展した。既存 RC 袖壁脚部の圧壊から、 最終的な破壊モードは曲げ圧縮破壊と判断した。

CW2L-SはR=0.25%正方向載荷では圧縮側壁(南側壁)小口に 縦方向のひび割れが発生し負方向載荷時には引張側壁(南側壁)せ い面に端部より450mm程度の範囲で浮きが生じた。

CW2L-SR1 は R=0.5%で正負ともに、圧縮側袖壁脚部に縦方向 のひび割れが発生し、2サイクル目にはそれらが伸展した。R=1.0% の1サイクル目に袖壁端部に浮きが発生し最大耐力に到達した。 最大耐力は無補強に比べ正側で292.6kN向上した。同変形角5サ イクル目では発生した浮きが剥落に伸展したが、無補強に比べそ の面積は小さく収まった。R=2.0%の2サイクル目では UFC-袖 壁間で UFC パネルが RC 袖壁と共に面外方向へ変形し、固定用ボルトが袖壁にめり込みナットがワッシャーを折り曲げた状態になったことから、R=2.0%にて実験を終了した。なお 80%耐力時の部材角は無補強に比べ R=0.5%から R=1.6%まで向上した。

CW4·S は R=0.25%で圧縮側壁の全小開口に鉛直方向のひび割 れが発生した。R=0.5%では正負共に脚部1列目の小開口の中央の 高さより浮きが発生した。R=-0.5%では脚部1列目の小開口の中 央の高さより,袖壁端脚部にかけての範囲で浮きが発生した。 R=1.0%サイクル中に小開口から柱側にかけてコンクリートの表 面が剥落した。その後 R=2.0%では剥落が表面だけでなくコアま で伸展したが,剥落領域は小開口の高さのコンクリートでそれよ り下部のコンクリートが剥落することはなかった。

CW4-SR は R=±1.0%サイクルの 2 周目から UFC パネル下部 の目地モルタルの圧壊が進行した。R=1.0%では正負共に脚部 1 列 目の小開口の中央の高さより浮きが発生した。無補強に比べ浮き の発生が遅いだけでなくその領域も狭かった。R=1.0%の 5 回のサ イクル中に小開口から柱側にかけてコンクリートの表面が剥落し た。この時,補強した UFC パネルには目立った損傷はなく既存コ ンクリートのみが浮き剥落を生じた。無補強に比べ最大耐力が正 側で 89.2kN 向上したが,部材角 R=5%まで載荷すると補強の有 無に関わらず耐力は同程度で安定する傾向を示した。

図4 UFC の負担せん断応力度の比較

(d) UFC 補強した袖壁付き柱の構造特性評価

(d-1)曲げ破壊形の袖壁付き柱の骨格曲線評価

初期剛性は,RC 造袖壁付き柱にUFC パネルを増設しているため,RC 構造物の耐震改修設計指針で提案されている袖壁を増設した柱の剛性評価式を参考に、式(1)により算定した。

 $K_{\rm R} = 4l^2 / (h^3 / E_s A_s + 2L^2 / E_B A_B) + K_0 \qquad (1)$

ここで、K_R:UFC 補強時の初期剛性, h:パネル内法高さ (mm), l:パ ネル端部から柱芯までの距離 (mm), L:斜材長さ (mm), Es:柱主筋のヤ ング係数 (N/mm²), As:柱主筋の断面積 (mm²), E_B:圧縮筋交いのヤング 係数で、UFC のヤング係数 (N/mm²)を用いる, A_B:圧縮筋交いの断面積 で、 $\alpha_B \cdot t^2$, t: 壁厚 (mm), α_B : 有効涂材幅比で、5.0 とする、 K_0 : RC 袖 壁付き柱の曲げせん断初期剛性 (N/mm)

剛性低下率は RC 袖壁付き柱の剛性低下率の算定式(2)を準用する。UFC 補強試験体では無補強に比べ剛性低下率が小さくなるため,補強による影響を考慮する必要がある。そこで本検討では UFC パネル補強により中立軸位置が変化に伴い引張鉄筋量が変化することを考慮して算定した。

曲げ終局強度は、RC 袖壁端部コンクリートの圧壊により最大耐 力を迎えていることを根拠とし、既存 RC 部と UFC パネルのひず み分布が同一と仮定する。等価ブロック法を用いた曲げ理論式を 準用し、通常の RC 部材の断面解析から得られる強度に、UFC に よる補強効果を考慮した項を単純累加し評価する。その概念図を 図5 に示す。下スタブ上面位置を危険断面位置とするため UFC パ ネルによる引張項は無視した。また UFC パネルが負担する圧縮応 力度分布は、中立軸が圧縮側袖壁断面内にある場合は三角形、中立 軸が柱断面内に存在する場合は、UFC パネルは袖壁のみを補強し ており壁断面内に作用するため台形とした。ここで破壊性状より 部材が最大耐力に到達直後に UFC パネル脚部に圧壊が確認され たため、脚部断面は無収縮モルタルが目地部に充填されているが、 ここでの算定では無収縮モルタル部での破壊はないものとし、 UFC と同じ強度を有すると仮定した。そのためシアスパンは加力 点から下スタブ上面位置までの長さとして曲げ破壊時せん断強度 を算定した。CW2-SF の算定は正負それぞれに上記の算定式を用 いた。スリットを設けた壁が圧縮側となる際、UFC パネルのみが 圧縮側袖壁となることとし、かつ引張側壁縦筋が存在しないこと として算定した。スリットを設けた壁が引張側となる際には引張 側の袖壁が UFC パネルのみとなり引張側袖壁部には縦筋が存在 しないこととして算定した。使用した算定式は式(3)とする。

CW2L-SR1 は CW2L-S の端部に三角形の圧縮モデルを UFC 圧縮負担力として壁端部に考慮する方法で算定する。CW2L-SR1 は他の補強試験体と異なり、UFC パネルが柱と連続しないため、 UFC パネル自体が回転しやすいものと推測される。柱主筋のひず みゲージの推移を図6に示す。このひずみゲージは今回の実験で 試験体の頂部に最も近いゲージとなっており、曲げモーメントの 影響が最も小さい高さのゲージを選んだ。推移をみると、引張側圧 縮側で共に引張を受けていることから、柱が鉛直方向に引張力を 負担していることがわかる。UFC パネルが回転することで柱が軸 方向に引張力を負担すると考え,柱の中心にかかる負担軸力を正 側最大耐力時の柱圧縮端部側の値が772(µ)であり,算定時には この実験値から1/3Evとし、その値に柱主筋のヤング係数と断面積 を乗じた値を引張軸力として使用した。また図7から、圧縮側の UFC パネルが軸力を支配的に負担しているため、圧縮側の UFC パネルの中心に本来柱にかかる長期軸力が作用すると仮定し最大 耐力の算定を式4により行った。

また、本検討による算定式の適用範囲は本実験における試験体 に共通する UFC パネルと RC 造袖壁をボルトで固定できた試験 体であることを条件とするため CW2-SR2 はボルトによる固定が 不十分であったことから骨格曲線比較の対象外とした。

$$\begin{split} \mathbf{M}_{\mathrm{u}} &= A_{st} \cdot \sigma_{st} \cdot d_t - A_{sc} \cdot \sigma_{sc} \cdot d_c - \sigma_{av} \cdot b \cdot (\beta_1 \cdot X_n)^2 / 2 - \\ \varepsilon_c \cdot E_{UFC} \cdot t_{UFC} \cdot X_n / 3 + N \cdot g \end{split}$$
(3)

 $M_{u} = A_{st} \cdot \sigma_{st} \cdot d_{t} - A_{sc} \cdot \sigma_{sc} \cdot d_{c} - \sigma_{av} \cdot b$ $\cdot (\beta_{1} \cdot X_{n})^{2}/2 - \varepsilon_{c} \cdot E_{UFC} \cdot t_{UFC} \cdot X_{n}/3$ $+ N_{t} \cdot g_{c} + N \cdot g_{UFC}$ (4)

ここで、 A_s : 引張側鉄筋の各断面積(mm²)、 σ_s : 各引張側鉄筋の応力度 (N/mm²)、 d_i : 圧縮縁から各引張側鉄筋までの距離(mm)、 A_s : 圧縮側鉄筋の 各断面積(mm²)、 σ_s : 各圧縮側鉄筋の応力度(N/mm²)、 d_i : 圧縮線から各圧縮 側鉄筋までの距離(mm)、 σ_s : コンクリートの平均応力度(N/mm²) (=0.85 σ_B)、 σ_B : コンクリート圧縮強度(N/mm²)、b: 柱幅あるいは袖壁厚さ(mm)、 β_1 : コ ンクリート強度に依存したストレスブロック置換のための係数、 X_a : 圧縮縁 から中立軸までの距離(mm)、 ϵ_e : コンクリート圧縮縁歪み、 E_B : UFC もしく は RC 補強壁コンクリートのヤング係数(N/mm²)、 t_B : UFC パネルもしくは RC 補強壁の厚さ(mm)、N: 軸方向力(N)、g: 圧縮縁から重心位置までの距 離(mm)、 g_{UFC} : 圧縮縁から UFC パネルの中心までの距離 (mm)、 N_t : 引 張軸力で、柱主筋のひずみゲージより求めた値より 1/3 ϵ_v (N)とする。

上記の方法により求めた曲げ終局強度,初期剛性並びに降伏点 剛性を用いて,算定値と実験値の比較した結果を表3に示す。ま た,CW2-SFは、本報では終局強度のみの検討としたため終局強 度算定値のみ記載した。算定精度として最大耐力は全て安全側に 算定され、かつUFC補強試験体では最大耐力は1.02~1.23倍と 精度良く算定可能であった。最大耐力時の変位では1.27~1.70倍 と安全側に捉えてはいるものの、分割の有無により算定精度にば らつきが見られ、今後分割を考慮し精度を向上する算定法の検討 が必要である。

(d-2) せん断破壊型袖壁付き柱の骨格曲線評価

UFC パネルに貼り付けたロゼットゲージを用いて, UFC パネ ルの応力の推定を行う。負担水平せん断力は No.3,8,13,18 から算 定した。算定結果を図8 に示す。次に, CW3・SR1 で実験時 UFC パネルにせん断ひび割れの発生した点に近い No.11 および No.15 の最大主歪みの推移を図9 に示す。推移をみると R=0.22%付近で 最大主歪みが急激に増加し引張歪推定値を。を大きく超えている。 本検討ではを。を急激に大きく上回る点を UFC パネルのひび割れ 発生時と定義した。図9に示すように、UFC パネルのひび割れ発 生を UFC パネルの負担せん断力推移にプロットすると、UFC パ ネルのせん断ひび割れ発生時と UFC パネルの最大負担水平せん 断力が概ね同時であることから、UFC パネルのせん断破壊によっ て最大負担力が決定したと考えられる。また、上記した補強部材の 荷重変形関係と併せても UFC パネルのせん断ひび割れ発生時と 部材の最大耐力が概ね同変形角であることから UFC パネルのせ ん断破壊が部材の最大耐力を決定したと判断した。

せん断破壊型試験体 CW3·S 及び CW3·S を一体型 UFC パネル 補強した試験体 CW3·SR1 の終局強度算定について検討する。実 験では CW3·S はせん断破壊し, CW3·SR1 は柱と袖壁の分離挙動 後,袖壁端部の圧壊により破壊した。図10 に CW3·S の分割累加 式を用いてせん断終局強度を求めた骨格曲線を示す。CW3·SR1 は 実験前の計画では既存袖壁付き柱のせん断終局強度に UFC パネ ルのせん断終局強度を累加してせん断終局強度を求めた(約 938kN)が,破壊性状や最大耐力が想定と異なった。表4 に算定 時に使用した UFC パネルの負担せん断力を示す。算定では UFC パネルのせん断破壊となっており,断面積とせん断力を乗じた値 ×2 (左右のパネル分)である。

上記の破壊性状に基づき、UFC パネルが R=0.22%で最大せん 断強度になることとし、無補強袖壁付き柱 CW3·S の実験結果にお ける R=0.22%時のせん断強度を累加する算定を行った。この計算 では UFC パネルはせん断破壊するものの既存袖壁付き柱はせん 断破壊せずに最大耐力を迎えるというモデルを想定しているため、 最大耐力後に袖壁と柱が分離し、袖壁端部の圧壊によって耐力低 下を迎えた CW3·SR1 及び CW3·SR2 の破壊性状の算定法として 妥当であると判断した。図11 左に UFC パネルのせん断破壊のみ を算定した骨格曲線と CW3·S の骨格曲線を併せて示す。図11 で は無補強試験体 CW3·S は既往式にて十分な精度で算定可能であ

試験体名			CW2-S	CW2-SR1	CW2-SF正	CW2-SF負	CW2-SR1V	CW2-SR2V	CW2-SR2T正	CW2-SR2T負	
		実験値	297.1	451.6	213.4	-421.2	460.6	462.1	406.3	-348.0	I
曲げ終局強度	(kN)	算定値	284.7	385.4	173.3	-393.9	401.5	483.5	397.4	-293.9	ļ
		精度	1.04	1.17	1.23	1.07	1.15	0.96	1.02	1.18	
		実験値	0.71	1.00			0.86	0.95	0.85	-0.76	
降伏時部材角	(%)	算定値	0.60	0.75			0.62	0.73	0.70	-0.62	ļ
		精度	1.18	1.34			1.38	1.30	1.23	1.22	
試験体名			CW2L-S	CW2L-SR1	CW4-S	CW4-SR	CW3-S	CW3-SR1	CW3-SR2	CW2-SR1J	CW3-SR0
		実験値	506.50	799.1	241.3	330.5	674.4	768.2	802.6	464.6	538.9
曲げ終局強度	(kN)	算定値	502.9	930.5	247.9	329.3	609.1	7	09.9	409.7	516.4
		精度	1.01	0.86	0.97	1.00	1.11	1.08	1.13	1.13	1.04
		実験値	0.40	1.00	0.88	0.99	0.45	0.22	0.25	0.97	0.99
降伏時部材角	(%)	算定値	0.40	1.00	0.51	0.71	0.39	0	.218	0.85	0.99
		精度	1.00	1.00	1.72	1.40	1.15	1.00	1.15	1.14	1.00

表3 算定結果の精度

ることを確認している。そこで、RC 袖壁付き柱と UFC パネルの 最大強度時の部材角におけるそれぞれの強度を累加した点をせん 断終局強度として骨格曲線を作成した。算定結果を表5 に示す。 UFC 補強した CW3-SR1, CW2-SR2 は実験時に部材が分離挙動 を示した R=0.2~0.3%付近を提案した算定法で無補強試験体と同 等の精度で捉えることができた。

(e) UFC 補強による損傷量軽減効果

(e-1) ひび割れ幅・長さの推移

以下に無補強試験体(CW2·S)及び一体型や分割型UFC補強 試験体(CW2·SR1, CW2·SR1V, CW2·SR2V, CW2·SR2T)柱 及び南側袖壁の最大ひび割れ幅について検討したところ,柱部材 は1/200rad及び1/100radでCW2·Sを上回る値を示した補強試 験体があるが,南袖壁ではCW2·Sの最大耐力1/200rad以降は常 に最大ひび割れ幅はCW2·Sが大きい値を示した。

(e-2) 浮き・剥落面積の推移

CW2-S と UFC 補強試験体 4 体の浮き剥落面積の推移を示す。 CW2-S 及び CW2-SR2T は 1/200rad で浮きが発生し、その他の 補強試験体は 1/100rad で浮き剥落が発生した。浮き剥落面積は常 に CW2-S が最も大きい値であった。これらの結果から、厚さ 30mm の UFC 補強では、浮き剥落が発生するタイミングを遅れ させるだけでなく、最大耐力時(1/100rad)において浮き剥落の面積 を低減できることがわかる。また、UFC パネルの分割による損傷 低減の傾向は見られなかった。CW2-SR2T は正側(圧縮側)の際 に、圧縮側パネルの厚さは 20mm であり、他の補強試験体(UFC パネル厚さ 30mm)では発生しなかった浮きが R=1/200rad で発 生した。しかし最大耐力時にはパネル厚さ 30mm の補強試験体と 同様、浮き剥落面積を低減できることを確認した。

(e-3) 高解像度写真計測を用いた損傷計測の精度検証

部材実験 CW2-S における OHP と高解像度写真計測それぞれ より作成したひび割れ図からひび割れ長さの比較を行う。表 6 に それぞれの長さとその比較を示す。長さは OHP より作成したひ び割れ図の全ひび割れ長さ及び高解像度写真計測より作成した全 ひび割れ長さを比較し、高解像度写真計測で計測不可能であった ひび割れを区分することで、高解像度写真計測で計測できたひび 割れのみを OHP のひび割れと比較した。結果として精度が 0.998 と概ね一致する値で計測可能なことを確認した。

表6 高解像度写真計測とのひび割れ長さ比較

	OHP	高解像度写真計測	精度
高解像度写真計測が 判読可能なひび割れの長さ(m)	4.304	4.295	0.998

(f) まとめ

RC 袖壁付き柱試験体に対して UFC 補強を実施し,曲げ破壊し た試験体の UFC 補強効果を定量的にし,それらの骨格曲線の評価 方法を提案し,その精度を明らかにした。さらに逆対称加力となる 袖壁付き柱試験体に対して,UFC で補強された場合に,せん断破 壊させることはできず,袖壁と柱の境界で分離する損傷性状とな り,当該補強が脆性的なせん断破壊を防止できることを明らかに した。またそれらの強度評価方法について検討した。

図11 荷重変形角関係の比較(左:算定過程,右:算定結果)

せん	断終局強度	E	
補強後上昇分		316.8	kN
破壊形式		パネルせん断破	壊
パネル圧壊	Q1	274.4	kN
パネル座屈	Q2	323.8	kN
パネルせん断破壊	Q3	158.4	kN
柱主筋全降伏	Q4	1054.7	kN

表5 算定結果一覧

		CW3-S	CW3-SR1
最大耐力(実験値)	kN	675	788
せん断終局強度	kN	609	710
精度		1.11	1.11

2) 部分架構に対する検討4)

(a) 実験計画

(a-1) 試験体概要

試験体は、壁厚の薄い供用住宅の典型的な開口位置を想定し、袖 壁・垂れ壁・腰壁・方立壁の取付く2.5層2スパン架構を2体(ス ケール1/2)作成した。無補強試験体(No.4)と補強試験体(No.5)と し、No.5には袖壁と方立壁面に片側からPCaUFCパネルを接着 した。壁厚はt=60mmで、柱断面は350mm角、主筋が16-D16、 帯筋は閉鎖型形状でD10@50である。梁断面は250mm×350mm、 主筋は上5本下3本のD16で、あばら筋は柱同様閉鎖型形状とし D10@50である。壁配筋は縦横ともにD6@100シングル (pw=0.53%)であり、壁端部には曲げ補強筋を配し、方立て壁は 2-D10を、その他の壁に2-D13を軸方向に配筋した。図1に試 験体形状とパネル位置を、図2に各部材断面、図3に架構配筋図 を示す。

(a-2) 補強方法

PCaUFC パネルを袖壁と方立壁に接着することで補強を行っ た。躯体とUFC パネル間に高強度無収縮モルタルを充填し,既存 RC 造非耐力壁とUFC パネル間はエポキシ樹脂で接着した。方立 壁に関しては,腰壁,垂れ壁端部が危険断面位置となるように3つ に分割してパネルを貼り付けた。図4に補強方法の概要を示す。 また,表1~3に使用した材料特性を示し,それぞれ鉄筋,コンク リート系(コンクリート・UFC・高強度無収縮モルタル),および エポキシ樹脂接着剤の試験結果を示す。

(a-3) 加力計画・計測計画

3F 柱の各加力点が同じ水平変位を保つように、3本の柱を両端 ピンの治具で連結し、正負に載荷を行った。柱の初期応力は、柱断 面に対する軸力比で外柱が 0.075 σ B, 中柱が 0.15 σ B に相当する 圧縮力を最上階柱頭からスタブ間柱内にアンボンド PC 鋼棒を設 置し導入した。図5 に加力計画図を,図6 に加力ステップを示す。 水平加力は,架構の水平変位制御で行った。制御に用いた全体変形 角は,最上階の南北の変位計の平均値を,変位計設置した高さ(1F 階高 1.575m+2F 階高 1.750m=3.325m)で除した値からスタブの 変位を減じた値とする。

その他の変位計による計測項目としては、柱、梁それぞれの曲げ 変形とせん断変形と壁のせん断変形であり、その設置位置を図7に 示す。また、鉄筋のひずみ計測については、梁の剛域、ヒンジ発生 位置、柱の反曲点高さ、柱脚の降伏時期を計測項目とした。その貼 付位置を図8に示す。

(b) 実験結果

(b-1) 破壊経過と荷重変形関係

変形角 R=1/1600rad.のサイクルで各階袖壁および方立壁の開口 際と各階梁に曲げひび割れが、2 階袖壁にせん断ひび割れが生じ た。R=1/800rad.では各階袖壁、方立壁および梁の曲げひび割れが 増加し、各階腰壁、2 階垂垂れ壁にせん断ひび割れが生じた。 R=1/400rad.で1階、2階の外柱に脚部から階高の1/3 程度まで曲 げひび割れが生じ、2階方立壁の開口上部の偶角部に軽微な圧壊が 生じた。R=1/200rad.で、2 階の開口上下の偶角部の袖壁、方立壁 に圧壊が生じ、かぶりコンクリートの剥落が見られた。1 階、2 階 の中柱の脚部から階高の1/3 程度まで曲ひび割れが生じた。 R=1/100rad.では各階の袖壁、腰壁、垂れ壁および方立壁のせん断 ひび割れ、圧縮破壊が進行した。なお、1 階部分ではかぶりコンク リートの剥落を伴うような圧縮破壊は生じておらず、1 階の袖壁に 貼り付けた UFC パネルの腰壁高さにひび割れが生じた(写真1

図2 部材断面

(a) 参照)。1 階左側の方立壁のせん断ひび割れ幅が 4mm 程度まで拡大した。

最終的には、袖壁と腰壁、垂れ壁の境界位置に損傷が生じ(写 真1(b)参照),1階柱脚,2階および3階の梁端主筋が降伏し、 全体崩壊の様相を示した。

R/1000 (rad) 40 30 20

10

0

-10

-20

-30 -40

1/1600 1/800

1/400

図9に各層の荷重変形関係を示す。図より、2層の層間変形角が 1/200rad.程度で耐力がほぼ頭打ちとなり、その後 1/100rad.まで 耐力をほぼ維持していることが分かる。また各層の変形は2層が 1層よりやや大きい状態で推移している。

図10に今回のUFC壁で補強した試験体と補強していない試験

図7 変位計設置位置

図6 加カステップ

1/200

1/100

1/50

(a) 最大耐力時 (R=+1/100rad.)

図8 歪みゲージ貼付位置

(b) 最終破壊状況 (R=+1/33rad.)

写真1 破壊状況

体³⁰の最大耐力に対する層せん断力と全体変形角の関係を示す。層 せん断力は 2 本の水平ジャッキの合計値を示している。正載荷と 負載荷ともに補強した試験体が R=1/100 まで高い耐力を維持して いるが、無補強試験体は R=1/200 で最大耐力に達した後に、急激 な耐力低下を起こしている。その後、両試験体は耐力低下を起こし ているが、大きな変形まで、無補強試験体の耐力を下回ることはな かった。 図 11 (a), (b) に,正負における無補強試験体と補強試験体の 最大耐力で無次元化した荷重変形の包絡線の比較した図を示す。 図 11 (a) より,正側においては前述通り,補強試験体が全体変形 角 0.5%において最大耐力を発揮しそれを 1.0%まで維持した後, 耐力低下を起こしている。また 2.0%を超える変形以降は最大耐力 に対して発揮した耐力比は無補強試験体とほぼ同程度であること が分かる。一方で,図 11 (b) より,負側においては両試験体とも

0.5%で最大耐力を発揮した後、耐力低下を起こしている。しかし その耐力低下の程度は補強試験体の方が緩やかであることが分か る。

図12(a),(b)に正負において,原点とそれぞれ0.5%,1.0%, 2.0%における各最大耐力点を結んだ直線を比較した図を示す。 また図13(a),(b)に,正負における負勾配の比率を比較した図 を示す。なお比率は,図12(a),(b)に示す0.5%以降の各点を 結んで得られる勾配を,原点と0.5%点の割線勾配で除して算定 した値である。図13(a),(b)より,1%までは補強試験体の負 勾配の程度は極めて緩やかで,正側で約-0.02,負側で-0.09程度 である。それ以降2%までは,正側では無補強試験体との差はほ とんどなく,負側は無補強試験体に比べ負勾配の程度は大きい。 このことは,補強により耐力低下が開始する変形を大きくできた

ことを示している。

(b-2) ひび割れ状況

図 14 (a), (b) に、補強試験体と無補強試験体の全体変形角 R=1/200, 1/100, 1/50rad.の2回目のピーク終了時の損傷状況を 示す。黒塗りはコンクリートの剥落部分を示す。

R=1/200 において、補強試験体の方立て壁の中央部におけるひ びわれ損傷が、無補強試験体のそれと比較して抑えられているこ とが分かる。これは方立て壁に貼り付けた UFC 壁が剛体回転変形 し、壁頭と脚部に損傷を集中させた結果、方立て壁のせん断変形成 分が抑えられたものと推察される。よって方立て壁に典型的に生 じる頭部から脚部にかけて生じる斜めひび割れが補強試験体では 確認されなかった。また袖壁の生じるひび割れ損傷も比較的抑え ている事が分かる。

図 14 ひび割れ状況((上段 R=1/200 rad., 中段 R=1/100 rad., 下段 R=1/50 rad.))

R=1/100 において、いずれの試験体も2 階の壁部でコンクリートの剝落損傷が確認される。方立て壁については、いずれも壁頭部に剝落損傷が見られるが、補強試験体は脚部においても同様の損傷が確認される。また図中円印で囲んだ袖壁周辺においてもコンクリートの剝落が確認されるが、補強試験体においては、剝落位置が梁に取り付く腰壁端部に集中しているのに対し、無補強試験体は袖壁端部に集中している。このことは、UFC 壁補強によって袖壁付き柱の曲げ耐力が壁付き梁のそれより大きくなったことで、損傷分布に変化が見られたものと推察される。このことは、当該補強方法が損傷部分を制御できることを示唆している。

R=1/50rad.において,無補強試験体は2階の壁に大きく剝落損 傷が集中しているのに対して,補強試験体は1階の袖壁や方立て 壁にも剝落損傷が確認される。また図中に円印で囲んでいる袖壁 部の損傷については、1/100rad.同様,補強試験体の場合は腰壁に 損傷が集中している。一方で1階中央の袖壁については腰壁上部 位置の袖壁部に剝落損傷が確認される。このことはUFC補強によ って2階壁付き梁が曲げ破壊し,かつその後最大耐力が低下する ことで、1階の袖壁付き柱の反曲点位置が上がり、1階袖壁付き柱 脚部が曲げ破壊したものと思われる。文献3)によると、無補強試 験体は2階に損傷が集中する部分崩壊形であることが示されてい るが、補強試験体はUFC補強により全体崩壊形を形成したと考え られる。以上のことから、PcaUFC壁補強により、損傷低減に加 え、建築物全体の崩壊形の制御ができたことを示しており、本補強 工法の特徴が示された。

(b-3) 鉄筋降伏状況

図15 (a), (b) に,各変形角における補強試験体と無補強試験 体の,柱梁の主筋・せん断補強筋,壁の曲げ端部補強筋と横筋に貼 り付けたひずみゲージの値から各鉄筋の降伏状況を示す。

両試験体においてほぼ最大耐力を発揮した R=1/200rad.におい て、方立て壁については、補強試験体は 2 階壁頭部の曲げ補強筋 が降伏しているのに対し、無補強試験体は横筋が降伏している。こ のことは、前節で述べた通り、UFC 補強によって方立て壁のせん 断変形を抑えた結果と整合している。また補強試験体については、 1 階腰壁の端部の曲げ補強筋が降伏している。一方、補強試験体は 袖壁フェイス位置の梁主筋が降伏しているが、無補強試験体は柱 フェイス位置の3 階梁主筋が降伏しており、危険断面位置が異な る。

R=1/100rad.において、補強試験体は1階柱脚部主筋が降伏して おり、ほぼ全体崩壊形を形成していることが分かる。一方、無補強 試験体では2層の部分崩壊形³⁰であることが確認される。 R=1/50rad.において、補強試験体では、3 階梁のせん断補強筋が 降伏しており、UFC 壁により梁の危険断面位置が袖壁端部にあっ たことから、梁の負担するせん断力がこの変形レベルにおいても 大きかったことが原因と推察される。

以上のことから、両試験体で部材の降伏状況が異なっており、 UFCパネルを貼り付けることにより、崩壊形を全体崩壊形へと移 行できたことが確認された。

(c) まとめ

PcaUFC 壁を片面から袖壁および方立て壁に貼付けた2層2ス パンの壁付き架構試験体に加力実験を実施し、当該補強効果につ いて以下の知見が得られた。

- ・UFC 壁を袖壁および方立て壁に貼り付けることにより, R=1/100まで最大耐力を維持することができ,R=1/50まで耐力 低下の抑制効果,すなわち架構の靱性能の向上が見られた。
- ・最大耐力近辺における補強した部材の損傷の低減効果が確認さ れた。
- ・架構の崩壊形を部分崩壊形から全体崩壊形へと変化させ,層変 形分布の集中も改善することができた。

3) まとめ

近年の大地震によって顕在化している RC 造非構造壁の損傷軽 減による地震後継続使用性を確保する補強工法に関する検討とし て,超高強度繊維コンクリート (UFC)を用いて補強した袖壁付 き柱試験体および部分架構試験体に対して,構造実験を行い以下 の知見を得た。

袖壁付き柱試験体については、曲げ破壊する場合の骨格曲線評価方法を示し、その精度を検証した。またせん断破壊する場合においては補強後の破壊が想定と異なることを示し、その場合の強度評価の考え方を示した。

部分架構においては、補強の効果として、剛性強度の向上、既存 RC壁の損傷低減、崩壊形の制御について確認された。本検討にお いて実用化のための必要な技術資料を収集できた。

今後はこの補強工法をより広く展開するための検討が必要とな る。

参考文献 V - (1)

- 向井智久ほか:超高独実繊維補強コンクリートを用いたプレキャスト袖壁 により補強された RC 柱の終局強度、日本建築学会構造系論文集第710号、 pp.637-645、2015.4
- 2) 谷昌典はか:損傷的成及び構造性指改善を目指したRC造方立壁の実大実験、 コンクリート工学会年次論文報告集、Vol.37, No.2, pp.901-906, 2015
- 内田崇彦ほか: RC 造非耐力壁付き2層2スパン架構の水平加力実験 その8 実験概要,破壊経過,日本建築学会大会学術講演梗概集, pp.265-2662016
- 6井智久,石岡拓,内田崇彦,松浦恒久:プレキャストUFCパネル接着により補強した RC 造壁付架構の実験的研究,日本コンクリート工学年次論文集,Vol39,No.2,pp.889-894,2017.7
- 5) 渡邊秀和,向井智久,石岡拓,久保佳祐:プレキャストUFCパネルを 貼り付けた袖壁付柱部材のせん断耐力に関する研究,日本コンクリー ト工学年次論文集,Vol40,No.2,pp.955-960,2018.7
- 6) 久保佳祐,向井智久,石岡拓,内田崇彦:UFCパネル補強した RC 造 袖壁付き柱の骨格曲線評価,日本コンクリート工学年次論文 集Vol40,No.2,pp.973-978,2018.7
- 7) 内田崇彦,向井智久,坂下雅信,石岡拓,成瀬忠,前川利雄,谷昌典,久保佳 祐:壁付き RC 造架構を対象とした UFC パネルによる損傷軽減型耐震 補強工法の施工合理化に向けた部材実験 その1 実験概要,日本建 築学会大会学術講演梗概集,pp291-292,2017.8
- 8) 堀伸輔,向井智久,坂下雅信,金川基,近藤祐輔,松浦恒久,谷昌典,山田崇人:壁付き RC 造架構を対象とした UFC パネルによる損傷軽減型耐震 補強工法の施工合理化に向けた部材実験 その2 損傷状況,日本建

築学会大会学術講演梗概集, pp293-294, 2017.8

- 9) 久保佳祐,向井智久,坂下雅信,堀伸輔,金川基,近藤祐輔,松浦恒久,谷昌 典,衣笠秀行:壁付き RC 造架構を対象とした UFC パネルによる損傷 軽減型耐震補強工法の施工合理化に向けた部材実験 その3 損傷分 析,日本建築学会大会学術講演梗概集,pp295-296,2017.8
- 10) 坂下雅信,向井智久,石岡拓,成瀬忠,内田崇彦,前川利雄,谷昌典,衣笠秀行:壁付き RC 造架構を対象とした UFC パネルによる損傷軽減型耐震 補強工法の施工合理化に向けた部材実験 その4 荷重変形関係と補 強効果、日本建築学会大会学術講演梗概集, pp297-298, 2017.8
- 11) 久保佳祐,向井智久,渡邊秀和,石岡拓,堀伸輔,内田崇彦,谷昌典,衣笠秀行:壁付き RC 造架構を対象とした UFC パネルによる損傷軽減型耐震 補強工法の施工合理化に向けた部材実験 その5 せん断実験概要, 日本建築学会大会学術講演梗概集, pp389-390, 2018.9
- 12) 渡邊秀和,向井智久,金川基,前川利雄,松浦恒久,谷昌典,久保佳祐,工藤 陸:壁付き RC 造架構を対象とした UFC パネルによる損傷軽減型耐震 補強工法の施工合理化に向けた部材実験 その6 せん断実験結果, 日本建築学会大会学術講演梗概集, pp391-392, 2018.9
- 13) 近藤祐輔,向井智久,渡邊秀和,石岡拓,金川基,松浦恒久,谷昌典,久保佳 祐:壁付き RC 造架構を対象とした UFC パネルによる損傷軽減型耐震 補強工法の施工合理化に向けた部材実験 その7 曲げ実験概要,日 本建築学会大会学術講演梗概集,pp393-394,2018.9
- 14) 金川基,向井智久,渡邊秀和,谷昌典,堀伸輔,内田崇彦,近藤祐輔,衣笠秀行:壁付き RC 造架構を対象とした UFC パネルによる損傷軽減型耐震 補強工法の施工合理化に向けた部材実験 その8 曲げ実験結果要, 日本建築学会大会学術講演梗概集, pp395-396, 2018.9
- 15) 田沼毅彦,向井智久,渡邊秀和,谷昌典,石岡拓,金川基,松浦恒久,工藤陸: 壁付き RC 造架構を対象とした UFC パネルによる損傷軽減型耐震補強 工法の施工合理化に向けた部材実験 その9 開口の影響,日本建築 学会大会学術講演梗概集,pp397-398,2018.9
- 16) 石岡拓、田沼毅彦、向井智久、渡邊秀和、谷昌典、堀伸輔、内田崇彦、前川利 雄:壁付き RC 造架構を対象とした UFC パネルによる損傷軽減型耐震 補強工法の施工合理化に向けた部材実験 その 10 実用化に向けた 施工試験,日本建築学会大会学術講演梗概集,pp399-400, 2018.9

(2) 杭基礎構造システムの構造性能評価

1)研究背景と目的

2011年の東日本大震災では、構造設計時に十分な検討が明示的 に求められていない部位の損傷が顕在化し、その結果、当該建築物 が地震後,継続使用できなくなる事例が確認されている1)。上記の 典型的被害の一つとして杭基礎の被害が挙げられる。現行基準に おいて杭基礎は中小地震における損傷制御を目的とした設計が行 われているものの、大地震後の継続使用性を確保するための基礎 構造の終局限界状態における構造性能に基づく設計はほとんど行 われていない。そのような中,近年の研究として,東日本大震災に て被災した既製杭を対象とした被害再現のための曲げせん断実験 ²⁾をはじめとして、種々の既製杭の杭頭曲げせん断実験³⁾、杭・パ イルキャップ・基礎梁を有する部分架構実験 4) 等の他, 東北太平 洋沖地震によって被災した杭基礎構造の被害要因分析のための解 析的検討5.6 に加え、大地震の地盤の応答変位を考慮した杭基礎構 造を対象とした構造設計法についての検討^{7,8}が実施されつつある。 また継続使用の観点においては、杭基礎が損傷した場合に補修補 強を行い、その後も建築物を継続使用することがあり、例えば、東 日本大震災において杭頭部等が損傷した後に補修補強を行う事例 が散見 9 されており、それに関連して補修補強後の構造性能評価 に関する実験10が行われている。一方で、大地震時に靱性を期待 した杭部材として場所打ちコンクリート杭があるが、大地震時の 地盤変位等の影響を想定した構造性能評価のための杭頭曲げせん 断実験¹¹⁾が実施されている。

一方,日本建築学会からは2017年に基礎構造の構造性能を示した指針案¹²⁾が刊行され、大地震時に対する杭基礎構造を対象とした構造性能評価に資する技術資料が纏められつつある。このように、近年の大地震時に対する技術資料の整備のための杭基礎構造に関する研究活動が精力的に実施されている。

そこで本研究では、上記の研究背景を踏まえ、大地震後の継続使 用性を確保するためのコンクリート系杭基礎構造システムの構造 性能評価に資する技術資料の収集を目的とした実験的研究を行っ た。ここでの杭基礎構造システムとは、杭および杭周辺に付帯する パイルキャップ、基礎梁、柱部分の総称である。

2) 既製杭の構造性能評価

大地震時の既製コンクリート杭の曲げ挙動の把握を目的として, 42 体の既製コンクリート杭試験体を用いて曲げ実験を実施した。 試験体は全て杭径 \u00 の既製コンクリート杭であり,コンクリ ートの設計基準強度は105N/mm²である。試験体は17 体のPHC 杭,17 体のPRC 杭,8 体のSC 杭である。導入した軸力は、杭の 基本的な性能把握のために軸力比0~0.2程度とした試験体だけで なく、大地震時を想定して引張軸力(最大で軸力比 0.40)や、高 圧縮軸力(最大で軸力比 0.52)とした試験体もある。実験は、図 1に示す載荷装置を用いて実験を行った。載荷は、2点載荷単純梁 方式の曲げ実験である。

実験結果の分析およびファイバーモデルを用いた曲げ解析を行い、以下のような知見を得た。

- (1) PHC 杭と PRC 杭は、コンクリートの圧壊(図2(a))また はPC 鋼棒の破断(図2(b))によって耐力が決定した。PHC 杭と PRC 杭が曲げ圧壊する場合は脆性的な破壊となったた め、現状では十分な安全率を持った設計が必要になる。大地 震時を想定した設計を行うためには、現状よりも靱性のある 杭の開発が必要なことがわかった。
- (2) PHC 杭と PRC 杭について, ファイバーモデルを用いた曲げ 解析を 2 ケース実施した。一つは既往の学会指針案¹²⁾の方 法を用いたものであり,もう一つは本研究で提案した評価法 である。その結果,最大耐力時の曲げモーメントは 2 ケース とも概ね評価できた。一方,最大耐力時の曲率の評価では, 本研究で提案した評価法を用いることで評価精度が向上し たことが確認できた。

(3) SC 杭は、鋼管の局部座屈(図2(c))により耐力が決定した。ただし、引張軸力を加えたSC 杭については終局状態を実験によって確認できなかった。曲げ性状を適切に評価するためには、繰返し挙動を含む鋼管のモデル化や、鋼管によって拘束されたコンクリートのモデル化(ひずみ軟化域の応力低下性状評価や曲げ圧縮限界ひずみの評価)が必要である。

(a) コンクリートの圧壊によって耐力が決定した試験体

(b) PC 鋼棒の破断によって耐力が決定した試験体

(c) SC 杭の局部座屈図 2 試験体最終破壊性状

大地震時の既製コンクリート杭のせん断挙動の把握を目的とし て、9 体の既製コンクリート杭試験体を用いて構造実験を実施し た。曲げ実験と同様に、試験体は全て杭径 φ400 の既製コンクリー ト杭であり、コンクリートの設計基準強度は 105N/mm² である。 試験体は PHC 杭 3 体、 PRC 杭 6 体である。導入した軸力は、大 地震時を想定して引張軸力(最大で軸力比 0.26)や、高圧縮軸力 (最大で軸力比 0.34)とした。実験は、図3に示す載荷装置を用 いて実験を行った。中央のジャッキを逆方向に動かすことで、試験 体に逆対称曲げモーメントが作用する曲げせん断実験である。

1:試験体 2:載荷ジャッキ(押400t/引150 t ×2台) 3:軸カジャッキ(押500t/引200 t ×4台)
 4:試験体支持点 5:フレーム自重相股用吊上げジャッキ 6:コンクリートブロック
 図3曲げせん断実験載荷装置

軸方向ひび割れを伴う破壊試験体

(a)

(b) せん断破壊試験体図4 試験体最終破壊性状

実験結果の分析および既往の評価式¹²⁾を用いた最大耐力の評価 を行い、以下のような知見を得た。

- (1) 比較的高圧縮軸力を作用させた PHC 杭および PRC 杭4 体において,既往の既製杭の実験では報告されていない,杭体軸方向に平行して走る軸方向ひび割れを伴う破壊(図4(a))が見られた。これらの試験体について,既往のせん断終局耐力評価式¹²⁾を用いて最大耐力を評価したが,4 体すべてで危険側の評価となった。
- (2) 軸方向ひび割れを伴った試験体について、既往の文献を参考 に軸方向ひび割れ耐力についての検討結果を示した。試験体 の軸方向にひび割れ面を仮定することによって軸方向ひび 割れの評価を行う耐力式の提案を行い、実験結果を評価した 結果安全側に評価できた。提案式の評価精度を向上させるた めには、追加検討により精度検証が必要である。
- (3) 引張軸力下の3体および中圧縮軸力下のPRC杭2体ではせん断破壊もしくは曲げ降伏後のせん断破壊(図4(b))となった。これらの試験体では、既往のせん断終局耐力評価式¹²⁾を準用してせん断耐力を算出し最大耐力を評価した場合、安全側の評価となることが確認された。
- 3)場所打ち鋼管コンクリート杭の構造性能評価

大地震時の場所打ち鋼管コンクリート杭の曲げ挙動の把握を目 的として、5 体の場所打ち鋼管コンクリート杭試験体の実験を実施 した。試験体は杭径 φ 1200,鋼管厚さ 9mm の場所打ち鋼管コン クリート杭であり、コンクリート圧縮強度は 30N/mm² 程度であ る。試験体 5 体のうち、2 体は鋼管内に異形鉄筋を軸方向に配筋し た試験体であり、残り 3 体は鉄筋を配筋していない試験体である。 試験体の軸力は、大地震時を想定して載荷区間の最大曲げモーメ ントに応じて変動させた。その際、引張軸力は最大で軸力比 0.15、 圧縮軸力は最大で軸力比 0.43 とした。実験は、図5 に示す載荷装 置を用いて実験を行い、2 点載荷単純梁方式の曲げ実験である。

実験結果の分析および平面保持を仮定した曲げ解析を行い,以 下のような知見を得た。

- (1) 全ての試験体において、鋼管の局部座屈によるものと思われ る鋼管の膨れ上がりが観測された(図6(a))。その後、局部 座屈を生じた箇所の鋼管が破断した(図6(b))。破断後、せ ん断力を除荷した後に、長期軸力を負担できたことは確認し ている。既往の曲げ終局耐力評価式¹²⁾では規定のない局部 座屈という破壊モードが明らかとなった。
- (2) 平面保持を仮定した曲げ解析により、実験で見られた局部座 屈発生する前において、圧縮縁コンクリートの圧縮限界歪到

①試験体 ②鉛直載荷ジャッキ(400t/175t×2台,200t/100t×4台)
 ③軸力ジャッキ(500t/200t×4台)
 ④載荷フレーム ⑤支持点クレビス

図5 場所打ち鋼管コンクリート杭載荷装置

(a) 局部座屈(b) 鋼管破断図6 場所打ち鋼管コンクリート杭試験体破壊性状

リートモデルを用いることによって,実験結果を精度よく評価することができた。

4)場所打ちコンクリート杭の構造性能評価

大地震時の場所打ち鉄筋コンクリート杭の曲げ挙動およびせん 断挙動の把握を目的として、9 体の場所打ち鉄筋コンクリート杭を 用いて構造構造実験を実施した。また、曲げ破壊した 3 体の試験 体に対して、モルタル補修および鋼板巻き立て補強を施し、再度載 荷を行い、補修または補強を施した場合の杭の耐震性能について も実験的に確認した。試験体は全て杭径 4 400 の場所打ち鉄筋コ ンクリート杭であり、コンクリート設計基準強度は 33N/mm² で ある。基準試験体に対して、軸力比やせん断スパン比を変化させて 試験体パラメータとした。また、軸力は軸力比 0.15 または 0.40 の 一定軸力としたが、一部の試験体は大地震時を想定した変動軸力 を作用させた。その際、引張軸力は最大で軸力比 0.20、圧縮軸力 は最大で軸力比 0.40 とした。実験は、図7 に示す載荷装置を用い て実験を行った。

実験結果の分析および既往の評価式¹³⁾を用いた検討を行い、以下のような知見を得た。

- (1) 実験を行った場所打ちコンクリート杭(通常の杭の配筋を 想定)は、曲げ破壊またはせん断破壊した。この時の曲げ 耐力実験値およびせん断耐力実験値は、既往の RC 造柱の それぞれの耐力評価式¹³⁾を用いることで、安全側に評価で きた。
- (2) 損傷後に杭頭部を補修した試験体(図8(a))では、モルタル 補修によって補修前の8割程度まで耐震性能を復旧するこ とができることがわかった。
- (3) 損傷後に杭頭部を鋼板巻き立て補強し、充分な定着長を有す るあと施工アンカーを曲げ補強筋として用いた試験体(図 8(b))では、補強前に比べて剛性・耐力を向上することがで きることがわかった。

5) 杭基礎構造システム部分架構実験

過去の地震被害をみると、杭体頭部の被害に比べて杭頭接合部 を含むパイルキャップの被害は比較的少なく、耐震上の課題が余 り明確でなかった。そのため、パイルキャップや杭頭接合部に関す る実験的な研究は少なく、既往の文献¹²⁾で紹介されている構造性 能評価法は、十分に検討されているわけではない。一方で、大地震 後の継続使用性を確保するための基礎構造の終局限界状態におけ る構造性能に基づく設計の開発のためには、杭の杭頭部だけので なく、パイルキャップや杭頭接合部の構造性能評価が必要である。 そこで本研究ではパイルキャップや杭頭接合部の構造性能の把握

(a) モルタル補修を施した試験体

(b) 鋼板巻き立て補強を施した試験体図8 場所打ち鋼管コンクリート杭試験体破壊性状

や,杭基礎構造システム全体の地震時挙動の把握を目的として,16 体の杭基礎構造システム部分架構試験体を用いて構造構造実験を 実施した。この試験体は、例えば図9のように杭、パイルキャッ プ,基礎梁,柱で構成されたト形の部分架構試験体を基本とした。 部分架構試験体は実大スケールの試験体が4体、縮小試験体が12 体である。 実大部分架構試験体は、杭径 \$ 800 の場所打ち鉄筋コンクリート杭を用いた試験体2体と、杭径 \$ 400 の既製鋼管コンクリート 杭を用いた試験体2体である。杭径 \$ 400 の試験体では、杭頭接 合筋の鉄筋量をパラメータとして杭頭接合部の破壊についての検 討を行った。試験体の軸力は、大地震時を想定して杭頭接合面の最 大曲げモーメントに応じて変動させることを基本とした。その際、 引張軸力は最大で杭に対する軸力比 0.49、圧縮軸力は最大で杭に 対する軸力比 0.54 とした。実験は、図9(a)に示す載荷装置を用い て実験を行った。

縮小部分架構試験体は、杭径 φ 190、鋼管厚 45mm の鋼管杭を 用いた試験体 12 体である。試験体パイルキャップ内の配筋方法 (標準型・かご筋型)をパラメータとして、パイルキャップせん断 耐力の検討をおこなった。また、杭頭接合筋の鉄筋量をパラメータ として杭頭接合部の破壊についての検討を行った。杭基礎構造シ ステム全体の地震時挙動の把握を目的として、取付く柱を偏心さ

せた試験体や袖壁付き柱とした試験体を用いて実験を行った。試験体の軸力は,柱に対する軸力比0.30とした。実験は,図9(b)に示す載荷装置を用いて実験を行った。

実験結果の分析および既往の評価式^{例たば12)}を用いた検討を行い, 以下の知見を得た。

- (1) 実験を行った部分架構試験体は、パイルキャップせん断破壊
 (図10(a))、杭頭接合部破壊(図10(b))、柱脚曲げ破壊(図10(c))、杭頭部曲げ破壊などの破壊が見られた。
- (2) 既往の実験に基づいたパイルキャップせん断耐力式¹²⁾について、接合部の有効断面、有効鉄筋、作用軸力の評価を修正した評価式の提案をおこなった。提案式を用いて、パイルキャップせん断破壊した試験体の結果を精度良く評価することができた。一方で、トラス・アーチ理論に基づくパイルキャップせん断耐力式の提案も行った。こちらの提案式でも、パイルキャップせん断破壊した試験体の結果を精度良く評価することができた。
- (3) 杭頭接合部破壊の試験体では、杭頭接合面における杭頭接合 筋の降伏後に杭頭接合部周辺のコンクリートの破壊によっ て耐力が決定した。このコンクリートの破壊は、杭頭接合面 の圧縮側(支圧部)コンクリートだけでなく、杭頭を埋め込 んだ側面のコンクリートも、杭体のてこ作用によって損傷が 見られた。既往の評価式^(例には19)を用いて、試験体の耐力評価 を行ったところ精度良く評価出来たとは言えなかった。これ は、①杭頭接合面の圧縮側(支圧部)コンクリートが支圧効 果によって強度が上昇していること、②杭頭部のパイルキャ

ップ内への埋め込みによるてこ作用曲げモーメント耐力寄 与分は陽に含まれていないことが原因と考えられる。杭頭接 合部破壊の評価では、これらの抵抗機構に関する検討が必要 であることがわかった。

(4) 偏心柱や袖壁付き柱を用いた試験体では、取付く柱の影響により、パイルキャップ内の応力状態が変化することがわかった。特に柱を偏心させた場合、破壊モードがパイルキャップせん断破壊から柱期破壊に変化した。大地震時における杭基礎構造システム全体の挙動の把握のためには、今回の実験結果を基に、システム全体の設計モデル(危険断面位置、剛域の設定、保証設計の手法など)に関する検討を行う必要があることがわかった。

1ッペイルキャップ,2SC杭,3鉄骨柱,4鉄骨梁,5軸カジャッキ(押500t/引200t×4台),6水平 力載荷ジャッキ(押400t/引150t×2台),7水平反力用ジャッキ,8杭測支持点,9柱則支持点,10: フレーム自重相殺用ジャッキ,11:澎験体自重相殺用ジャッキ,12:スペーサー,13:コンクリートブロッ ク,14反力床

(a) 実大部分架構試験体 載荷装置

(a) パイルキャップせん断破壊

パイルキャップ底面

パイルキャップ側面

(b)杭頭接合部破壊

(c) 柱脚曲げ破壊図10 部分架構試験体 試験体破壊性状

6) 鉛直支圧強度を確認するための要素実験

パイルキャップを有する杭基礎構造システムでは、杭頭接合面 破壊が破壊モードの一つとして考えられる¹²⁾。杭に既製杭を用い る場合,この杭頭接合面破壊の計算において文献¹²⁾では、杭頭部 とパイルキャップコンクリート間での支圧強度を用いている。耐 震指針¹²⁾では、杭中空断面とし、その断面に対する支圧の圧縮強 度増大係数は 2.0 を上限とすることが提案されているが、パイル キャップ部の配筋による支圧強度の上昇の効果についての検討は されていない。そこで本研究では、17 体の縮小試験体を用いて、 支圧強度に関する要素実験を行った。基準試験体はパイルキャッ プを模した 250mm×250mm,高さ 310mmの直方体である。 図 11 に示すように、試験体の上部に中空円形の支圧盤(径 150mm)を取付け、支圧盤が試験体にめり込むように、一軸単調 押し切り載荷を行った。そのほかの試験体は、試験体のサイズや配 筋、支圧盤のサイズなどを変更して試験体パラメータとした。特 に、試験体の配筋量や中子筋の配置を変化させることで、支圧強度 に有効な配筋方法についての検討を行った。

図 12 最終破壊状況

実験結果の分析および既往の評価式¹⁴を用いた最大耐力の評価 を行い、以下のような知見を得た。

- (1) 試験体はすべてコンクリートの支圧破壊となった。図12 に 示すように、実験中に加力方向に割裂ひび割れが発生し、最 大耐力以降はそのひび割れが拡大した。
- (2) 鉄筋の配筋の方法により支圧強度および終局変形(最大耐力の80%に低下するときのめり込み変形)が大きくなることがわかった。特に、中子筋を配筋することで支圧強度および終局変形が上昇することがわかった。また、支圧盤直下の配筋が有効に効いていることが確認出来た。
- (3) 既往の評価式¹⁴⁾を用いて支圧強度の検討を行った結果、中 子筋を配筋した試験体の実験値は計算値よりも大きくなっ たことがわかった。中子筋の効果を適切に評価するためには、 中子筋による支圧強度上昇を考慮した支圧強度式の提案が 必要であることがわかった。

7) まとめ

本研究では、大地震後の継続使用性を確保するためのコンクリ ート系杭基礎構造システムの構造性能評価に資する技術資料の収 集を目的として、既製コンクリート杭体、場所打ち鋼管コンクリー ト杭体、場所打ちコンクリート杭体(補修補強を含む)、RC 造パ イルキャップ性能把握および部分架構のモデル化のための部分架 構実験、架構の圧縮鞹性確保のためのパイルキャップ支圧実験に 関する一連の実験研究で得られた結果を示した。

杭体に関する構造性能の把握を行い、大きな軸力が作用する場 合の既製コンクリート杭体の脆性破壊モードの評価、場所打ち鋼 管コンクリート杭の鋼管部の座屈破断に伴う破壊、パイルキャッ プの終局強度評価、接合面における破壊モードに関する知見を得 た。今後、これらの知見を纏めて地震後の継続使用性確保に資する 杭基礎構造システムの工法とそれに応じた設計方法を検討するこ とが必要である。

参考文献 V-(2)

- 国土技術政策総合研究所,建築研究所:平成23年(2011年)東北地方太 平洋沖地震被害調查報告,国土技術政策総合研究所資料第674号,建築研 究資料第136号,2012.3
- 2) 金子治、中井正一、阿部秋男、向井智久:東北地方太平洋沖地震における杭基礎被害の要因分析に向けた検討 その3 杭基礎の強度・変形特性に関する実験、日本建築学会大会学術講演梗概集、2014.9、pp.699-700
- 3) 長澤他 既製コンクリート杭の曲げ変形性能に関する研究, AJ 大会学術 梗概集,pp757-758,2016
- 4) 岸田慎司, 伊藤宏亮, 向井智久, 柏尚稔, 平出務, 谷昌典, 金子治, 小林 勝己, 飯場正紀, 土方勝一郎: 既製杭・RC 杭を用いたト型部分架構に対

する静的載荷実験 その 1 実験概要,日本建築学会大会学術講演梗概 集pp.215-216,2015.9

- 5) 金子治,川股紫織,中井正一,関口亨,向井智久:東北地方太平洋沖地震 における杭基礎の被害要因に関する解析的検討,日本建築学会構造系論文 集第717号,pp.1699-1706,2015.11
- 6) 土方勝一郎,吉田洋之,平出務,飯場 正紀,向井智久,柏尚稔:東北地 方太平洋沖地震において杭基礎が大破した建物の被害要因分析 その4 建物-杭-地盤連成解析による検討,日本建築学会大会学術講演梗概 集,pp.221-222,2015.9
- 7) 若林博, 三町直志, 永田敦, 柏尚稔, 溜正俊, 倉持博之, 向井智久, 平出 務, 飯場正紀: 地震後の継続使用性を確保した新築建築物の設計・耐震性 能評価 その5 杭基礎の耐震設計フローと耐震性能評価方法, 日本建築 学会大会学術講演梗概集,pp.53-54, 2015.9
- 8)伊藤裕一,向井智久,田所教志,田沼毅彦,草刈崇圭,柏尚稔,小田聡: 地震後の継続使用性を確保した新築建築物の設計・耐震性能評価 その 9 高層壁付き共同住宅の杭基礎の耐震設計・評価例,日本建築学会大会学術 講演梗概集,pp.47-48,2016.8
- 9) 尻無濱昭三,金子治,平出務,向井智久:東日本大震災において基礎杭 が被災した共同住宅の被害と補修,補強事例,コンクリート工学, Vol.53, No.3, pp.283-288,2015.3
- 10) 平出務,向井智久,岸田慎司,柏尚稔,坂下雅信,小林勝己,金子治: 既製杭・RC 杭を用いたト形部分架構に対する静的載荷実験 その3 補 修を施した場合,日本建築学会大会学術講演梗概集,pp.387-388,2016.8
- 柏尚稔,坂下雅信,向井智久,平出務:静的載荷実験に基づく杭頭部の 損傷度評価法の検討,日本地震工学会大会,P3-31,2016.9
- 12) 日本建築学会:鉄筋コンクリート基礎構造部材の耐震設計指針(案)・ 同解説,2017.3
- 13) 国土交通省住宅局建築指導課ほか:2015 年版 建築物の構造関係技術 基準解説書,2015
- 14) 日本建築学会:プレストロンクリート造建築物の性能評価型設計 施工指針(案)・同解説,2015,pp71-72

₩ 被災建築物の地震後損傷を評価する計測技術に関する検討

(1) 測位衛星技術を用いた計測手法とその精度

建築研究所で保有する強震観測システムと宇宙航空研究開発機 構(JAXA)が保有する衛星測位システムを用いた建築物の変形観測 システムを相互に融合させた新たなシステム開発について,共同 観測を行うための対象として,建築研究所が保有する建屋とJAXA が保有する免震構造である建屋を選定し,前者に建築物上部と地 上に衛星測位データを受信する装置を設置し観測を開始した。こ れまでに,震度2程度の揺れを複数回観測できたため,それぞれ の観測データの分析を進めた。また双方のデータはそれぞれのシ ステムで記録されているため、双方のデータの一括収集および分 析できる包括的なシステム構築を目標とした検討を実施してい る。

また民間企業が有する衛星測位システムを用いた残留変形評価 手法構築のための観測を行う。JAXA が有するシステムより廉価な 分,測定精度は落ちるがその分を計測データの解析手法により計 測精度の向上を図る予定であり,これらのシステムの有用性を建 築研究所本館および新館,さらには長崎県端島における住棟にお いて検証し,データ分析手法を開発した。以下検討概要を示す。

No.	発震時	<i>h</i> (km)	М	震央	⊿ (km)	I _{JMA}
1	2017/10/01 10:25	5	4.9	茨城県北部	92	1.3
2	2017/10/03 04:01	8	4.2	茨城県北部	86	1.2
3	2017/10/06 23:56	53	5.9	福島県沖	144	2.3
4	2017/10/18 07:40	45	3.7	茨城県南部	18	0.7
5	2017/11/02 22:31	74	4.3	茨城県沖	97	0.9
6	2017/11/03 21:38	8	4.8	茨城県北部	86	2.2
7	2017/11/05 16:30	49	4.0	茨城県南部	20	1.5
8	2017/11/30 22:02	42	3.9	茨城県南部	19	1.3
9	2018/01/06 00:54	71	4.7	東京湾	55	1.8
10	2018/02/26 01:28	40	5.8	福島県沖	217	2.2
11	2018/03/30 08:17	56	5.1	茨城県沖	60	2.9

衣 本研究期间で待られた強震調	2録
-------------------	----

1) 建築研究所建屋を対象とした検討

(a) 建築物概要

解析対象とする建築物は SRC 造庁舎建築物である。平成 10 年 に建設された地上8階,地下1階,搭屋1階で,延床面積約5000m², 建築物高さ約31m,各方向3スパンの規模である。桁行方向が約 21.0m,梁間方向が約26.0m使用材料はコンクリート(Fe-24[N/mm²]),鉄筋(D10~16,SD295,D19~:SD345),鉄骨 (柱梁:SM490,一部:SS400)で,直接基礎である。

対象建築物は東北地方太平洋沖地震後、補修工事が行われてい

る。対象建築物には竣工直後から強震観測システムが導入されて おり、以来継続的に観測が行われている。地震計(図1参照)は、 近傍の地盤、地下1階、1階、2階、5階、8階に設置されている。 (b) 強震観測概要と結果

2017年10月以降, ANX 及び JAXA の両者で共通に強震記録 が得られた地震の一覧を表1に示す。2017年11月以降で, ANX 地表及び JAXA 基礎上の両者で震度2以上となった地震を 赤字で示している。

図2 衛星測位による変位計測と構造ヘルスモニタリングの連携イメージ

図3 建築研究所に配置したアンテナ及び受信機の位置

(c) 衛星測位観測概要と結果

現在,高層建築物においては,加速度センサーを利用した構造へ ルスモニタリング (SHM) のシステムが実用化されている。しか しイニシャルコスト面の観点から,低層〜中高層建築物に対する SHM の技術は導入が進んでいない状況である。そこで,安価かつ 地震時以外 (平時)でも使用できる技術として,GNSS (全球測位 衛星システム GPS, GLONASS, Galileo,準天頂衛星)を活用 した応答変位計測を実施することとした。本計測は,すでにカーナ ビや土本測量の技術として,衛星測位による変位計測は実施され ているため,特別なインフラの整備しなくても計測を実施できる ところにメリットがある。本計測の精度も含め,加速度センサーと の連携も視野に入れた (図2) 計測手法の構築を目指す。

図4にGNSS(Global Navigation Satellite System)を用いた位 置測位手法を示す。今回はRTKLIBを用いて、精度及び地震時 の挙動を反映可能なキネマティック測位にて、加速度計との変位 比較を行うこととした。本測定は、図3に示す通り装置の設置を 行い、2017年11月より測定開始した。

図4 GNSS を用いた測位手法

キネマテック測位における周波数,仰角 MSK における FIX 率 の比較を行った。L1L2L5 (3 周波), L1L2 (2 周波) において, それぞれ FIX 率 (求めるベクトル解が定まる率) GPS 及び BEIDOU の影響が大きいことがわかる。

以下に9月及び12月の代表日におけるスカイプロット(衛星配 置図)を示す。基準点も含めて、26~31機の衛星が常に確認でき ており、都心部に比べ(15機程度)、現在のアンテナ及び受信機の 配置がより良い場所であることがわかった。

表2 測定結果

キネマティック測位 fix率 比較(12月2日NO.	2新館中央)				
衛星名称	周波数	仰角MSK	Fix率	仰角MSK	Fix率
GPS	L1L2L5	15°	98.7%	20°	15.9%
G P S + BEI	L1L2L5	15°	0%	20°	100%
G P S + Q Z S + BEI	L1L2L5	15°	0%	20°	100%
G P S + G A L + Q Z S	L1L2L5	15°	98.7%	20°	15.9%
G P S + G A L + Q Z S + BEI	L1L2L5	15°	0%	20°	100%
G P S	L1L2	15°	20.9%	20°	0.1%
G P S + BEI	L1L2	15°	0%	20°	100%
G P S + Q Z S + BEI	L1L2	15°	0%	20°	100%
G P S + G A L + Q Z S + BEI	L1L2	15°	0%	20°	100%
G P S	L1	15°	2.3%	20°	2.7%
G P S + BEI	L1	15°	0%	20°	38.8%
G P S + Q Z S + BEI	L1	15°	0%	20°	38.8%
G P S + G A L + Q Z S + BEI	L1	15°	0%	20°	38.8%

建築研究所 基準点 スカイプロット図

スカイプロット図0922(基準点:暴露)

スカイプロット図1202(基準点:暴露)

GPS:8台 GLO:5台 GAL:2台 QZS:2台 BDS:9台 計26台

図 5-1 スカイプロット(基準点)

建築研究所 新館中央NO.2 スカイプロット図

図 5-2 スカイプロット (新館中央)

(d) 両者の比較

加速度計から変位に変換したもの(図6青線)とGNSS測位で 得られた変位(図6橙線)を比較した。

11月5日の地震では、建築研究所新館の8階の南北、東西、上下方向のそれぞれの水平変位(加速度積分換算値)は、0.02、0.1、0.08cm程度と非常に小さいため、GNSS測位の変位(0.1Hz以下、5Hz以上のBPF処理)との明確な比較は困難な状況(図6参照)であることがわかる。GNSS測位の有効性の検証には、1cm以上

の応答変位を生じる地震波にて比較を行う必要があるため、今後 その検証のための振動実験を実施予定である。なお、鉛直方向(Z 軸)については GNSS 測位の変位が大きくバラついており、本シ ステムとして不向きな方向であることがわかった。

(e) 建築物モデルに関する検討

(e-1) 解析条件

解析対象の建築物の骨組みを線材でモデル化する。柱,方立壁部 材は曲げばね,せん断ばね及び軸ばねを有する。袖壁付き柱の場 合,一本柱置換モデルとして扱う。梁部材は曲げばね及びせん断ば ねを有する。

モデル化にあたり、解析条件を以下に示す。

・雑壁を考慮する。

・地下をモデル化し、地下1階柱脚に固定条件を設定する。その ため基礎は完全に剛であると考える。

・8階以上に関しては、下部構造に比べて面積が小さいことや、剛 性に与える影響が小さいと判断してモデル化せず重量のみ考慮 する。

・階段については、水平力に影響しないとし、モデル化しない。

・危険断面位置を剛岐端,壁が付帯する部材の場合は壁部分を剛 域とするモデルを基本とする。剛域低減を行う場合は,0.25D(部 材せい)低減するものとする。壁が付帯する部材の場合は壁長さ含 む部材せいをDとする。

・1 階の耐震壁に関してはモデル化にあたり,開口がある場合はそ

れを考慮し、開口低減を行う。地下階の耐震壁に関しては無開口 の壁を耐震壁としてモデル化し、開口がある箇所についてはそ れぞれの柱、梁に付帯する壁としてモデル化する。

なお、耐震壁の側柱は鉄骨部材を考慮しないものとする。

・3 辺スリットが存在する箇所は梁の剛性には、付帯壁分の剛性増 大率を考慮するものとする。

(e-2) 解析方法

(e-2-1) 静的解析

荷重増分による非線形静的解析を行い,荷重分布はAi分布に基 づく外力分布を使用した。解析は長辺方向と短辺方向それぞれを 荷重方向とし,最大変形角が4%となる時点まで行った。

(e-2-2) 動的解析

地震計は建築物新館基礎底に設置してあるもののデータを参照 する。時刻歴加速度データは以下の通りである。また、減衰の種別 は初期剛性比例型を用い、減衰定数は 0.05 を用いる。解析では、 南北方向、東西方向、高さ方向の 3 方向全てから地震波を入力し た場合(以下 3 方向解析とする)について検討を行った。

(e-3) 解析結果 (e-3-1) 静的解析

図8 動的解析結果(各層荷重変形関係)(左NS方向,右EW方向)

静的解析結果から得られた各層のせん断力-変位関係を X 方向, Y 方向それぞれ図7に示す。両方向とも地下1階の剛性低下はほ とんど見られず,地震時に対してもそれほど被害がないことと整 合している。Y 方向における1層の剛性が他層と比べ極めて大き く,耐震壁の配置によるものである。

(e-3-2) 動的解析

地下1階からの各層の荷重変形関係を図8に示す。

(e-3-3) 強震記録との比較

解析対象建築物の地下1階,1階,2階,5階,8階では東北 地方太平洋沖地震時における観測データがあり,それらの積分値 より当該階の水平変位と解析結果との比較を行う。図9にX,Y 方向それぞれの比較した結果を示す。X方向ではRFの地上に対 する水平変位は解析値では62.1mmに対し,強震観測記録は 90.0mmと,解析結果が過小評価する結果となったものの,2F,

5F に関しては強震観測記録と概ね一致する結果を得た。Y 方向 も X 方向と同様の傾向が得られている。1 層に耐震壁が配置され ている影響を確認すると,X 方向では 2F の変位が解析結果は 6.25mm,強震観測が 6.50mm と良好な対応を示した。Y 方向で は解析結果による 2F 変位は 1.19mm,強震観測は 4.18mm で あった。

(e-3-4) 各部材損傷状況と残留変位の相関性

各地震動倍率の応答後の各部材の損傷状況を確認する。図10に 部材の降伏ヒンジを地震動倍率ごとに示した。

X方向(図10左)では、地震動倍率3倍時に中間階の梁の降伏

ヒンジが見られ、4 倍時では1 層の耐震壁の直上の2 層柱に降伏 ヒンジが生じた。中間階の剛性低下は主に梁部材の降伏ヒンジに よる影響であると考えられる。Y 方向(図 10 右)では地震動倍率 3 倍時に中間階の梁と2 層の X2, X3 構面の柱に降伏ヒンジが生 じていることから X 方向と同様の傾向が得られた。4 倍時には上 層階の梁及び2 層の X1, X4 構面の柱が降伏している。両方向と も地震動倍率 2~3 倍の範囲で梁の降伏ヒンジが著しく生じ、地震 動倍率 3~4 倍の範囲では柱部材の降伏ヒンジが見られ、損傷が拡 散する様子が確認された。

次に残留変位の算定を行う。図11 に X 方向, Y 方向それぞれの 地震動倍率ごとの残留変位の層間変位分布を示した。残留変位は それぞれ正負最大値を絶対値表記している。X 方向では地震動倍 率4倍時に大きい残留変位を示した。

損傷状況から地震動倍率 3~4 倍の際に生じた部材の損傷が残 留変位に及ぼす影響が大きいと考えられる。各部材損傷状況では 主に2層の柱部分の降伏ヒンジが発生しており、その影響と推察 される。またY方向では地震動倍率3倍時以降から比較的大きな 残留変位を示した。また4倍時にはさらに大きな残留変位の値を 示した。損傷状況から、2層柱の降伏ヒンジによる影響と推察され る。

1 自由度系モデルを用いた解析では地震動倍率をより細かく増 分させ、解析結果から得られる最大応答変位と残留変位の相関性 について考察する。

図12にX,Y方向の地震動倍率ごとの最大応答変位,図13に

残留応答変位を示す。図12よりX,Y方向共に地震動倍率が増加 するほど漸増する傾向にあり、特に2~4倍の区間で増加傾向が顕 著である。

図13より立体モデルの解析により得られた各地震動倍率時の等価高さにおける残留変位を示し、立体モデルのそれと比較したところ、値そのものの精度は高くないが、定性的な傾向はとられていると言える。

次に各方向における地震動倍率ごとの残留変位については、X方向の1自由度モデルにおける残留変位が地震動倍率1~3倍の区間で変位が0~10mmの範囲に対し、地震動倍率およそ3.25倍以降で急増し、30~50mm程度の値を示した。Y方向については、地震動倍率が1~2.5倍で変位が0~5mm程度であるのに対し、地震動倍率2.75~5倍で変位がおよそ7~40mmの範囲にあり、規則性はないもののX方向同様の傾向を示した。

一方でX方向の立体モデルの残留変位は、地震動倍率4倍、Y方向は3倍を境に残留変位の値が顕著に見られたことに対し、1自由度系モデルによる残留変位が比較的顕著になる時点がX方向では地震動倍率3.25倍、Y方向では2.75倍であることから、立体モデルの残留変位の傾向とおおむね整合する結果が得られた。

次に,1自由度モデルにおける地震動倍率・塑性率関係を図14に 示す。X方向では地震動倍率2.5倍時点,Y方向では2.75倍時点 で塑性率が1を超えており、そのあたりで部材の降伏が開始した ものと考えられる。Y方向においても同倍率付近で残留変位が顕 著に見られたことから塑性率と残留変位の相関性もおおよそ確認 できた。

(f) まとめ

本検討では東北地方太平洋沖地震により被災し,かつ強震観測 がされた建築研究所新館のSRC 庁舎建築物に対して,立体モデル を作成し,静的および動的解析を実施し強震観測との比較を行っ た。また,新館では等価1自由度系モデルを対象に動的解析を実 施した。以下に解析から得られた知見を示す。

・立体モデルに対して静的増分解析を実施し、建築物の構造特性 を確認した。具体的に、両方向とも地下階の剛性低下はほとんど見 られなかった。またY方向における1層の水平剛性が他層と比べ 極めて大きく、耐震壁が応答特性に与える影響を確認した。

・立体モデルに対して動的解析を実施し得られた最大応答変位と、 強震観測された値から得られる最大応答変位を比較し、上層階の

図13 地震動倍率-残留変位

応答変位の計算が観測値よりもやや小さめに評価されたが、下層 階の観測値を概ね捉えることができた。

・非線形静的増分解析に基づく等価1自由度系縮約手法によるモ デル化の妥当性を検討し、簡易的なモデルでの解析を行う場合で も地震動による最大応答変位を概ね捉えることができることを示 した。

・各モデルにおける解析では地震動倍率ごとの応答変形を比較す ることで、残留変位が顕著になる地震動レベルを確認し、同倍率時 の損傷状況及び塑性率から部材の降伏と残留変形の相関性を確認 した。具体的には等価1自由度系の塑性率が1.0以上の領域で残 留変位の値が顕著に増加する傾向が確認され、また立体モデルに よる動的解析結果から1階の耐震壁並びに2層柱の降伏ヒンジに よる影響があったものと推察される。

以上の検証結果をもとに、より迅速な被災度判定手法の開発の ために、当該建築物の残留変位を用いた各部材の損傷評価手法の 検討を今後の課題とする。

参考文献 VI-(1)1)

- 建築物の構造関係技術基準解説書編集委員会:2007 年版建築物の構造
 関係技術基準解説書,2007
- 日本建築防災協会:既存鉄筋鉄骨コンクリート造建築物の耐震診断基準・同解説,2009
- 3) 日本建築学会:鉄筋コンクリート構造計算規準・同 解説,2010
- 4)日本建築学会:鉄筋コンクリート造建物の靱性保証型耐震設計指針(案)・ 同解説,1999
- 5) 梅村魁:鉄筋コンクリート建物の動的耐震設計法・続(中層編), 1973
- 6) 日本建築学会:建築物の耐震性能評価手法の現状と課題, 2009
- 7) 建築研究振興協会:鉄筋コンクリート造建築物の性能評価ガイドライン,2000
- 8) 鹿嶋俊英ほか: 平成 23 年東北地方太平洋沖地震における建物の強震観 測記録, 建築研究資料, No.135, 建築研究所, 2012.3

2) 端島における住棟を対象とした検討

本検討では、対象建築物が相当程度劣化していることから、地 震などの外乱の影響と言うより、長期間における建築物の変状を 衛星測位による変位量を計測することで把握することを目的とし ている。従ってサンプリング応答は1Hzと荒いが、その分デー タ転送量を少なくし、観測システムの負荷を軽くなるよう計画し た。

(a) 建築物設置環境および建築物概要

端島(通称:軍艦島)は、長崎県南西部の海上に位置する面積約0.063km²の6回の埋め立てにより拡張された島である(図1)。 同島は明治時代より炭鉱の島として開発され、1974年に閉山された。島内には日本初のRC造高層住宅を初め34棟RC建築物が存在する。今回、計測対象としているのは主として最古の鉄筋コンクリート造共同住宅である30号棟(1916年)、また30号棟に近接する31号棟(1957年)、島の中央部に位置する3号棟(1959年)である。図より、この観測対象としている3棟はいずれも埋め立て地ではない土地に建設されていることが分かる。

(b)センサー設置概要

衛星測位情報を計測するためのセンサーを建屋の屋上並びに地 盤面に配置した(表1参照)。表に示すとおり,対象としている30 号棟にはセンサーを8基,3,31号棟には30号棟との比較のため にそれぞれ1基ずつ,灯台脇の比較的地盤上に2基設置し,建築 物の変形を,それぞれ屋上に設置した変位から地盤上の変位を差 し引くことで求めることとする。G-1~8(30号棟設置機器)につ いては,屋上の柱に特殊治具で固定する方法を採用した。また地盤 上には鉄筋を4本打ち込んで地盤に固定し,基礎はコンクリート を打設し,センサの支柱(長さ1.5m)を基礎コンクリートが硬化 した時点でスレート鋼板にボルトで固定した。30号棟に取り付く センサーへの電源については31号棟にソーラーパネルを設置し, そこから配線し給電した。他のセンサーにはそれぞれの設置箇所 にソーラーパネルを設置し直接給電した。

また,観測したデータは基準局に設置してある通信回線を利用 して遠隔地にあるサーバーに転送している。

(c) 計測データの分析手法²⁾

本システムで用いる RTK は、基準点からの補正観測情報を無線 などによって観測局に送信し、観測局の位置をリアルタイムで測 定する方法である。精度は数 cm 程度で精密な GPS 測位方法に比 べ精度は若干劣るが、リアルタイムで計測できる価値は高い。

しかし、この RTK の精度ではここでの目的には利用できないため、以下に説明する統計処理(母集団移動平均法、恒星日差分法)

図1 島内における対象建築物の配置 文献 1 に掲載図に情報を追加

設置箇所	計測開始日	センサー名(基数)
30 号棟	2018年5月1日	G-1~8(8 基)
31 号棟	2017年10月21日	G-9(1 基)
3 号棟	2017年10月21日	G-10(1 基)
地盤	2018年11月1日	G-11(1 基)
	2017年10月21日	K-1(1 基)

表1 センサー設置情報

をRTK 解析結果に対して行うことで高精度な計測(水平精度 2mm 程度)を可能にしている。

(c-1) 母集団移動平均法

母集団移動平均法は,時系列データを平滑化する手法で直近のn 個のデータの重み付けのない単純な平均である。

GNSS 衛星は約1日周期で同じ衛星配置を繰り返しているため, 母数を1日分の時系列データとするとその母数にはあらゆる衛星 配置のデータを含んでいる。したがって,1日分の時系列データの 母数は,統計的推測をする上で母集団の特性値が同じになる。

時系列データなどでバラツキがあるデータでも、移動平均を求 めることで、データは平均化され、計測しているものの挙動をつか むことが容易になる。図2は母集団移動平均値の時系列データ(東 西方向、+が東方向)の一例を示す。ここで点はRTKの計算結果、 線は母集団移動平均値のラインである。

母集団移動平均の長所は、中心極限定理や大数の法則より、 デー

赤線: 母集団移動平均値 青点: RTK生データ

図2 母集団移動平均値の時系列データ

図3 恒星日差分法の時系列グラフ

タ量が多いと移動平均値は最尤推定値となる点である。一方,母集 団移動平均の短所は,変位検出において母数のデータ分の時間遅 れを伴うこと(検出変位は単調増加する)である。この母集団移動 平均法の短所を補うため恒星日差分法がある。

(c-2) 恒星日差分法

恒星日差分法は、同じ衛星配置の計測値と基準値の差分をとる方 法で衛星測位誤差が衛星配置に依存している場合に効果的である。 恒星日差分法の長所は、「リアルタイム性」に優れていることであ る。恒星日とは、衛星が南中してから次に南中するまでを1日と するもので約23時間56分となる。それに対して太陽日(日本標 準時などの方法)は太陽が南中してから次に南中するまでを1日 (24時間)とするものである。恒星日は太陽日よりも約4分程度 早くなるため、恒星日で判断しないと同じ衛星配置にならない。図 3は恒星日差分法の時系列データ(東西方向、+が東方向)の一例 を示す。点は恒星日差分値の散布図で、RTKの生データに比べる と標準偏差が1/2~1/3になっている。突発的な変位が発生しても 移動平均法に比べ早期に検出可能である。

(d) 計測結果

2018年5月から4ヶ月間で得られた結果を示す。図4より各観 測点は南側に向かって変位していることが分かる。特に南側にあ るほどその変位量が大きい。一方で、鉛直変位も大きいが、これら は季節によって値が変動する傾向にあるが、これらの要因につい ては今後詳細な検討が必要になる。 以上,衛星測位情報を用いて長期間における変位計測を開始し 得られた結果を紹介した。今後,これらの計測・分析を継続する予 定である。

参考文献 VI-(1)2)

- 1) シーマン商会 HP (2019 年 1 月) http://www.gunkanjimatour.jp/gunkanjima/about.html
- 武石,江川,室井,横田,藤原:衛星測位を利用した次世代地すべり検知システム,第23回 GPS/GNSS シンボジウム,2018.10

(2) 3 次元レーザースキャナーを用いた計測手法とその精度 1) 部材レベルの損傷¹⁾

ここでは部材レベルの局所的な損傷を対象に、その計測と評価 を実施した。ここでの部材実験は、袖壁付き柱に対して片持ち柱形 式における加力条件を設定し、変位制御による正負漸増繰り返し 載荷を行い、各段階において袖壁付き柱の損傷性状を検討してい る。試験体の損傷を定量的に評価・比較するため、コンクリートの ひび割加幅、長さ、および剥落面積の計測を行っている部材実験²⁹ における試験体の損傷状況³⁰によると、柱には曲げひび割れ及びせ ん断ひび割れ、袖壁には曲げひび割れ、曲げ圧壊が発生している。

部材実験におけるレーザープロファイラによる計測は、無補強 試験体 CW2-S に与える加力毎に行われ、水平変形角の小さいもの から順に±1/800、±1/400、±1/200、+1/100[rad]の計7種に加力 前の状態を加えて 8 つのデータを記録した。点群データを表示し た例を図1に示す。図中の上部は加力装置の一部分、中心部は左 右に袖壁を持つ柱、下部は基礎スタブである。

(a) 壁面損傷性状評価手法の検討

損傷による点群データの分布の変化に着目し,壁面損傷性状評 価手法の基本的な方針の検討を行った。

(a-1) 損傷箇所の検出手法

計測対象の壁面を平面と仮定すると、その壁面の計測で得られ た三次元点群は、壁面を構成する平面上に分布することとなる。加 力により平面の一部が損傷した場合、その損傷部分の三次元点群 データは、先ほどの平面から逸脱した部分に分布することになる。 従って、壁面を構成する本来の平面(基準面と呼ぶ)を求め、その 平面から逸脱する三次元点群の分布を求めることで、損傷を受け 変形した箇所を特定できるものと考える。

図1 袖壁付き柱の点群データの表示 図2 抽出された損傷箇所

(a-2) RANSAC を利用した基準面の抽出

本稿で利用する点群データはレーザープロファイラの計測誤差 や壁面損傷によるデータの変位など、外乱があるデータであるた め、基準面を抽出する際は外乱の影響を受けにくい統計的な処理 を行う必要がある。このため、RANSAC(RANdom SAmple Consensus)⁴アルゴリズムを利用した平面抽出手法を利用する。

ここでは袖壁付き柱の柱部分,左右の袖壁部分の3つに分割した検討を行った。

(a-3) 基準面と各点群データの距離の算出

RANSACにより基準面を抽出した後に、基準面とそれを求める 元となった三次元点群データの全ての点との距離を計算する。基 準面との距離が極めて近く、基準面上の点と考えられる点のデー タを除去する。このような処理で残存する点群のデータは、損傷部 分を表すものと考えられる。この処理によって得られた結果の一 例を図2に示す。この図は+1/100[rad]の加力を2回受けた後の右 側袖壁である。図中の壁脚部に見られる密度の高い点の集合は、加 力によって発生したコンクリートの浮き剥落による損傷である。 このように、基準面と各点群データとの距離を利用することで、損 傷箇所を点群データの中から抽出できる。

(a-4) グラデーションによる変位量の可視化

(a·3) における損傷箇所の抽出結果では,損傷部分の位置や形状は確認できるが,損傷部分の奥行きまたは手前に対してどのように分布しているのかを確認出来ない。

これらの問題を解決するためには、損傷箇所の基準面からの変 位量を可視化する必要がある。このためグラデーションによる点 の変位量の可視化を行った。点群データの変位の方向と基準面と 各点群データの距離に応じてグラデーションによる色の変化を設

図3 基準面からの変位量と色の対応関係

定することで、色によって基準面との位置関係を把握できる。

グラデーションと変位量の関係を図3に示す。基準面を中心に、 表側と裏側方向にそれぞれ色が変化する。基準面付近ではおおよ そ緑色、表側に向かうごとに赤色に、裏側に向かう方向では青色に 変化する。最も損傷が見られた点群データにおいて、基準面からの 距離が10mm以内のデータが約95%以上であり、その範囲に主要 な点群データの変化が含まれると考え、色の変化が顕著に現れる ように、色が変化する距離の範囲を±10mmとした。

(b) 損傷性状可視化の結果

各加力段階における柱部分及び右側袖壁の点群データにグラデ ーションによる可視化を行った結果をそれぞれ図4に示す。各図 の可視化結果は左から順に加力前,部材角が±1/800,±1/400, ±1/200,+1/100[rad]の状態の結果をそれぞれ示している。

(b-1) 特徴的な点群データの分布の考察

図4より、1/100rad.において袖壁脚部の剥落損傷の分布が明確に表示されている。赤い部分は特に剥落損傷が大きい部分であり、その周辺はそれより剥落量が小さい領域が存在していることから、実際の剥落分布を評価できていることが分かる。

一方,加力前,+1/800,±1/200[rad]の点密度が他と比べて変状 があるという結果になっている。また+1/800[rad]の結果では,右 下部分とそれ以外の部分を比較すると,右下部分がはっきりとず れていることがわかる。この変形レベルでは,まだ部材の浮き剥落 損傷は生じておらず,複数ポジションから計測したデータを合成 する際のレジストレーションのミスと思われる。一つのポジションから計測した結果を図5に示す。図4で見られたエラーは見られないことが分かる。

(c) まとめ

鉄筋コンクリート造建築物の壁面の剥落に関する損傷性状の評価手法として,壁面損傷性状の点群データの可視化について検討を行い,基本的な検討を示した。今後は、複数のポジションで計測されたデータの適切な合成手法を確立するとともに、点密度の違いによる浮き剥落の評価結果の違いを検討する必要がある。

参考文献VI-(2)1)

- [1] 平河ほか:大地震により損傷した鉄筋コンクリート造建築物の三次元 点群データによる壁面損傷性状評価手法に関する研究,地理情報シス テム学会講演論文集, Vol.26, B-5-3, 2017.10
- [2] 内田ほか:壁付き RC 造架構を対象とした UFC パネルによる損傷低減 型耐震補強工法の施工合理化に向けた部材実験_その1_実験概要,"日本建築学会大会学術講演梗概集, pp.291-292, 2017.8
- [3] 堀ほか:壁付き RC 造架構を対象とした UFC パネルによる損傷低減型 耐震補強工法の施工合理化に向けた部材実験_その2_損傷状況,"日本 建築学会大会学術講演梗概集, pp.293-294, 2017.8
- M.Fischler and R.Bolles: Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography, " Comm. of the ACM, Vol.24, Issue 6, pp.381-395, 1981.

図5 右側袖壁に対する可視化結果(1ポジションの結果)

2) 架構レベルの損傷¹⁾

(a)対象架構試験体

点群データを利用した建築物の残留変形の測定手法の精度を検 討するため,静的載荷実験に使用された実大5層RC造架構試験 体を利用した²。実大架構の外観を**写真1**に示す。

この実大架構を用いた加力実験では、実大架構にアクチュエータ を複数台取り付け、左右方向に加力を行っている。実大架構には制 御計測のために変位計を各階床位置に設置しており、実験終了後 のいわゆる残留変形も計測している⁹。

本研究で利用する実大架構の正面と側面の三次元点群データを 図1に示す。残留変形として「ある箇所の加力前の位置から変形 後の位置との差(変位)」と「傾き」を扱う場合,計測データから 2つの任意の点を抽出し,その点の座標値を利用して変位と傾きを 理論上求めることができる。しかしながら、この方法では三次元点 群の測定誤差の影響を強く受けるため精密な評価には利用できず, これらの誤差を適切に考慮する必要がある。なお、この誤差の確率 分布は正規分布に従うことがわかっている。

正規分布では平均値 µ から±10 内に 68%, ±20 内に 95%, ±30 内に 99.7%の測定値が入るため, 任意の測定箇所で 1 点をピック アップしその座標値を利用する方法では, 30%以上の確率で, 真値 から±10 以上の誤差を含む点をピックアップする可能性がある。 なお今回利用した計測器では, 10 が 5mm である。

(b) 統計的な計測手法

ここでは、測定対象が建築物の壁面であることと、点群データが 高密度な点の集合であることに着目した。一般的に建築物の壁面 は平面であることが多いため、その建築物を測定した三次元点群 データも平面状に分布していると考えられる。このため、計測され た大量の点が示す特定の平面を統計的に求めるような処理を行えば、個別の点の誤差の影響を軽減し、精度の高い評価につながると 考えられる。

そこでロバスト推定を利用し、三次元点群データを平面化する ことで統計的に処理する方法を提案する。ロバスト推定とは、外れ 値含むデータから最も確からしい値を推定する統計的な推定方法 である。この方法を利用すれば、三次元点群データのような誤差を 含むデータセットに対して、誤差の影響を最小限に抑えた処理が できる。ここではロバスト推定の1つである RANdom SAmple Consensus(RANSAC)⁴を利用した。RANSAC を利用することで、 外れ値や誤差を含む三次元点群データから建築物の壁面を検出で きると考えられる。

本試験体は各部材が曲げ破壊するよう設計されていることから、 水平加力による部材変形はその端部領域に集中⁵⁰することが分か っている。そのため、当該損傷部分を含まない点群データを抽出す れば、その影響を受けていない平面状の点群データを特定できる ものと考えた。そこで、部材端部を避け、各階毎に柱や梁などそ れぞれから部材表面の点群データの抽出を行った。このように抽 出を行うことで、残留変形の影響が少なく凹凸を含まない小さな 平面状の点群データを得ることができる。この小平面を対象とす れば、建築物の各位置での部材表面の状態を高精度で取得できる。 また小平面同士の位置関係から部材面全体の変形を見て取ること もできる。正面の点群から柱に着目した小平面抽出を行った例を 図2に示す。

(c) 残留変形計測結果と考察

実大架構の柱部材を対象として,提案手法により測定を行った。 水平の残留変位は各小平面の平面の方程式から中心点を求め,そ

写真1 本研究に検討する実大5層架構の外観

図1 実大架構の点群データ(正面,側面) 図2 柱に着目した小平面抽出

の座標と基準点との差によって求めた。残留変形角は小平面自身 の傾きを利用した。正面(加力直交方向)と側面(加力方向)の測 定結果をそれぞれ表1と表2に示す。なお、静的載荷実験では正 負交番載荷を行っており、向かって右方向が正載荷である。

測定結果を見ると、正面方向においては変位が 1cm 以上の箇所 はなく,傾きも一定であるため、大きな残留変形は生じていない。 この方向は加力直交方向であることと整合的である。

一方,側面方向においては変位が3階まで段階的に増加しており, 最大で5階では約20cmである。本建築物は3層までの部分崩壊 形となるよう設計されていることから、上記の変形分布の結果は そのことに整合している。また残留変形角は1階が最大で、段階 的に減少している。このことから、上層階である4、5階では基礎 を起点とした残留変位の絶対値は大きいが、層間変形は下層階で ある1から3階に残留変形が集中している。

また、文献4) で示された実大架構の静的載荷分析における加力 ピーク時における水平方向の最大変形分布を図3に示す。図は加 カピーク時のデータであるため、除荷時における残留変形分布を 表してはいないが、同図と同様の分布になることが予想される。

図4に実験で得られている残留変形値と本手法で算定した残留 変形分布を示す。図より両者の分布傾向はよく一致している。 (d) まとめ

本分析により、三次元点群データから建築物の残留変形を測定

できる可能性を示すことができた。今後は、残留変形を精度よく評 価するための計測手法についても検討する必要がある。

参考文献VI-(2)2)

[1] 朝田, 曾鑫, 荒木, 硴崎, 向井, 石井: 大地震により損傷した鉄筋コン クリート造建築物の三次元点群データによる残留変形計測法に関する研 究, 地理情報システム学会講演論文集, Vol.26, B-5-4, 2017.10

[2] 壁谷澤, 向井, 福山, 加藤, 諏訪田, 坂下, 勅使川原, 田尻, "損傷低 減のために袖壁・腰壁・垂れ壁を活用した実大5層鉄筋コンクリート造建 築物の静的載荷実験(その2:試験体概要),"日本建築学会大会学術講演 梗概集, pp.211-212, 2016.

- [3] 諏訪田, 壁谷澤, 加藤, 向井, 坂下, 福山, 田尻, 楠, "損傷低減のた めに袖壁・腰壁・垂れ壁を活用した実大5層鉄筋コンクリート造建築物の 静的載荷実験(その3:加力および計測の概要)、"日本建築学会大会学術 講演梗概集, pp.213-214, 2016.8
- [4] M. Fischler, R. Bolles, "Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography, "Comm. Of the ACM, Vol.24, Issue6, pp.381-395, 1981.
- [5] 濱田, 前川, 内田, 菊田, 金川, 堀, 福山, 向井, 壁谷澤, "損傷低減の ために袖壁・腰壁・垂れ壁を活用した実大5層鉄筋コンクリート造建築物 の静的載荷実験(その4:変形性状),"日本建築学会大会学術講演梗概集, pp.215-216, 2016.8

			11	1 例足和未(五	_µ¤µ/			
(柱,階)	変位[m]	傾き[rad]	(柱,階)	変位[m]	傾き[rad]	(柱,階)	変位[m]	傾き[rad]
(1,5)	0.00649	1/429	(2,5)	-0.000662	-1/751	(3,5)	0.00278	1/612
(1,4)	0.00637	-1/484	(2,4)	0.00483	-1/2140	(3,4)	0.00478	-1/440
(1,3)	0.00952	1/607	(2,3)	0.000172	1/97	(3,3)	0.00133	1/451
(1,2)	0.00914	-1/1300	(2,2)	-0.00832	-1/675	(3,2)	0.00390	-1/398
(1,1)	0.00320	1/312	(2,1)	-0.00319	-1/324	(3,1)	0.00304	1/332

主 1

测宁结里(正面)

表2 測定結果(側面)

(柱,階)	変位[m]	傾き[rad]
(1,5)	0.191	1/17500
(1,4)	0.190	-1/520
(1,3)	0.176	1/70.2
(1,2)	0.117	1/50.0
(1,1)	0.0197	1/35.6

5

4

2

1

本手法の変位

従来計測の変位

図4 本手法の算定結果の精度

変位[mm]

200.0

300.0

3) 端島の住棟を対象とした場合¹⁾

ここまでの検討では点群データを使った地震時の損傷性状の把 握を目的とした内容を紹介した。ここでは、点群データの活用方法 について長崎県端島を対象とした検討を行った。具体的には、点群 を用いた文化遺産の現状把握並びに今後の保全を目的として、レ ーザースキャナーにより取得された大規模な点群データを利用す ることで、文化遺産を VR 体験できるシステムの試作を行い、利 用可能性を検討した。またシステムの試作で問題点を明らかにし た上で今後の開発の方向性を示す。

(a) VR の可能性

VR とは、計算機上で作られた世界を、人の感覚を刺激すること であたかも現実のように感じさせる技術を指す。人が外界から受 ける刺激の約80%は視覚情報と言われており、現実と同じような 視覚情報を与えることで体験者に高い現実感を与えられる。近年、 VR は観光分野にも活用されており[4]、現地に行くことなく観光 を体験できる。VR 体験システムの要求は以下が考えられる。

(1) 対象物を精細に表現できること

(2) 対象物を自由な位置から観察できること

(3) 複数人が同時に体験できること

(b) 文化遺産の VR 体験システムの試作と実行

(b-1) システムの試作

統合開発環境である Unity を使い,点群データ(三次元座標, RGB 値を使用)を仮想空間に描画した。実行環境は,HMD:HTC

図 1 VR システムの体験の様子

図3 建物に接近した際の様子

VIVE, CPU: Intel Core i5-4460, GPU: GeForce GTX 970, メ モリ 16GB である。

三次元点群データは、2016年に計測したデータを利用した。ここで対象としている建築物群は、2015年7月に「明治日本の産業 革命遺産 製鉄・製鋼、造船、石炭産業」の一部として世界文化遺 産に登録された、経年により劣化した RC 造建築物である。

実際に体験している様子を図1に示す。体験者はHMDを装着 し、そこに行ったかのように対象物を見ることができる。5メート ル程度の移動であれば体験者自身の足で移動することができるが、 それ以上の距離になるとトラッキングの範囲から逸脱するため、 補助機能としてコントローラの操作による移動を実装している。

(b-2) 表示例

建築物群を少し離れた場所から観察した景観を図2に示す。遠 方に見える建築物およびその壁面は、写真などと遜色のない表現 となり、表現力としては十分であることが確認した。次に、建築物 に接近して見上げた状態の表示画面をに示す。ここに現存する建 築物の多くは経年により老朽化しており、建築物への接近が危険 な場合もありえる。しかし仮想空間であればそうした制約を受け ないため、図3のように近接した位置から安全に観察できること も本システムの利点と言える。最後に、建築物の屋上で計測された 点群を表示した例を図4に示す。これは建築物の屋上から撮影さ れたもので、体験者の視点を高所に置くことで俯瞰して全体を眺 望することが可能となる。

図4 高所からの景観

(c) 試作システムの評価

(b) で示した試作システムを品質,点群データの特徴,性能の 面から分析・評価を行い,文化遺産のVR体験システムにおける 点群データの利用可能性を検討する。

(c-1) 品質評価

図2では、写真と遜色のない表現となり、図での視点の位置に おいては建築物の表現能力は十分と言える。しかし体験者が建築 物に接近すると図5に示すように、(1)建築物の壁面を表す各点間 に隙間が生じ建築物が半透明のように表示される、(2)点群の後方 の建築物が重なって表示される問題が生じている。これは表示デ ータ画面的な広がりを持たない点群であることによる。従って、対 象物を遠距離から見る場合には一定の密度を満たすことで表品質 を保証できるが、接近した場合には、点そのものの描画では不十分 であると言える。

(c-2) 計測データの欠損

点群データは光学的な遮蔽により,部分的にデータが欠損する という問題がある。点群の計測はレーザーを利用するため,光路上 に他の建築物などの遮蔽物が存在する場合,レーザーの影となる 部分はデータが取得できない。図6は建築物が遮蔽物となった時 の後方の点群データが欠損していることを示している。従って,点 群データの欠損を回避した適切な計測が必要である。

(c-3) 描画速度評価

試作に利用した VIVE は VR 酔いを抑制するため、90FPS での 描画を前提としている。1 秒に 90 フレームの出力を行うには毎フ レーム約 11 ミリ秒以内に描画処理を終える必要がある。しかしな がら Unity のプロファイラによると、表示点群が多い地点では、 1 フレームでの処理時間が 11 ミリ秒を超え,フレームレートが 90FPS を下回った。また実行時の体感としても、体験者の動きに 合わせたスムーズな表示ができておらず、十分な速度が確保でき ていない。

(d) 解決策の提案

ここでは前述の評価において挙げた問題を解決するための手法 の提案を行った。

(d-1) 品質の改善

点を描画した時の特性である,点群の後方が透けて見える現象 は表示品質低下の大きな原因となる。そこで二つの観点から改善 方法の検討を行う。

① 稠密な点群データによる遮蔽

遠方に表示された点群データは、写真と遜色のない表現となる ことを示したが、これは見かけ上の点の密度がディスプレイの表 現能力を超えたことに起因する。従って、対象物のデータを稠密に 計測することで近接した場合でも点間の距離は小さくなり、点の 透過現象は抑制することができる。この方法では、計測データをそ のまま使うため、対象物の最大限の品質が保証される。しかし点群 データが膨大になることで更なる描画速度の低下が問題となる。 ② ポリゴン生成による遮蔽

点群の隙間を補間するために,点群データからポリゴン面を生 成する。面を生成することで後方を遮蔽することができ,面の大き さによっては元の点群データと比較して点数を削減することがで きる。しかし計測されたデータから色や形状などが変化し,元のデ ータと比較して精細さを欠くという問題がある。また面のレンダ リング処理に時間がかかる恐れもある。

図5 接近による点群の透過現象

図6 遮蔽によるデータの欠損

(d-2) 描画速度の改善

LOD (Level Of Detail) は、視点からの距離に応じてモデルの 精度を切り替えて計算負荷を軽減する手法である。本システムで は距離に応じて密度の異なる点群、または精細度の異なる三次元 モデルを切り替えて表示することで描画処理を低減させる。

オクルージョンカリングとは、3D モデルが他の不透明なモデル によって遮蔽された場合は描画を行わない手法である。前述に示 したポリゴン生成を実装した際には、ポリゴン面による後方の遮 蔽が発生するためオクルージョンカリングによって描画コストを 低減させ、フレームレートを向上できると考えられる。

(e) まとめ

試作を行うことで点群データの利用可能性の検討を行い,実際 に運用する際の問題点を明らかにした上で解決策の提案を行った。 今後は,提案した解決策を実装していくことで,より実用性の高い システムの開発を進める予定である。

参考文献VI-(2)3)

- [1] 浜田侑輝, 曾鑫, 荒木俊輔, 硴崎賢一, 向井智久, 石井儀光:大規模 三次元点群データを用いた文化遺産のVR体験システムの構築に関す る研究,地理情報システム学会講演論文集, Vol.26, C-5-1, 2017.10
- [2] 野口貴文,楠浩一,桃山健二,迫田丈志,向井智久,前田匡樹,今本啓一,兼松学,濱崎仁,"端島の建築の劣化による構造性低減に関する研究その1",日本建築学会大会学術講演梗概集,515-516,2016.
- [3] 西村正三,木本啓介,味岡収,安井伸顕,松田浩,"光学的計測手法を 用いた軍艦島護岸の計測とモニタリング",日本実験力学会,インフ ラ構造物のメンテナンスにおける計測技術 Vol.12, 2012.
- [4] 西村正三, 原健司, 木本啓介, 松田浩, "3D レーザ・デジタル画像を用いた軍艦島計測と損傷図作成", 日本写真測量学会, Vol.51, 46-53, 2012.
- [5] 佐藤啓宏,大石岳史,池内克史,"VR/MR ガイドツアーシステムの開発 と運用",日本バーチャルリアリティ学会,Vol.19,247-254,2014.

₩ おわりに

本報では、H28 年度より実施してきた建築研究所の指定研究課 題「既存建築物の地震後継続使用のための耐震性評価技術の開発」 の研究背景並びに3つの研究テーマに関する実施概要とその成果 について紹介した。

この3カ年の研究成果を踏まえ、熊本地震で得られた知見により抽出された対象建築物に対して、ここで示した技術をより実用的に活用するための以下に示す3つの研究テーマをさらに推進していく所存である。

(1) 研究テーマ1:新耐震以降の既存RC造建築物を対象とした 地震後継続使用性の評価手法と継続使用性確保のための補強設計 手法に関する検討

新耐震以降に設計された既存 RC 造建築物を対象として,地震 発生前後における時点の建築物の継続使用性評価手法並びに耐震 補強方法を提案する。特に 2016 年 4 月に発生した熊本地震で大 破判定となった新耐震以降に設計された既存 RC 造建築物を対象 とした検討を実施する。以上の検討から,新耐震以降の既存 RC 造 建築物の大地震時に対する継続使用評価手法・補修補強設計方法 を纏める。

(2) 研究テーマ2:大地震後に継続使用を確保できるコンクリート杭を用いた基礎構造システムの設計手法に関する検討

地震時の軸力作用下においても、コンクリート杭を用いた基礎 構造システムとして建築物の継続使用性を確保するための十分な 靱性能を有する断面配筋性能を明らかにする。またここで提案す る基礎構造システムを対象とした設計方法について検討する。な お本検討は新築の建築物を対象とした検討になるが、将来的にこ こで得られた知見を活用して既存建築物の継続使用性評価に資す る検討方法へ応用することを想定している。

(3) 研究テーマ3:被災建築物の迅速な損傷性状評価手法に関する検討

地震時における建築物や部位の応答を,直接計測したデータに 基づき,被災建築物の迅速な損傷性状評価手法の検討を行う。その 検討結果に基づき,地震後の建築物の継続使用性判定のための各 種計測装置の必要性能とそれらの利用方法を纏める。

最後に本研究成果は,所内および所外機関に所属する共同研究 者と熊本地震で被災した建築物管理者との密接な連携によって得 られたものである。ここに衷心より感謝申し上げます。 以下共同研究(または研究会名称)課題と機関名(所属は本課題実施時点)を示す。

所内:

構造G:井上波彦,加藤博人,平出務,坂下雅信,中村聡宏,渡邊 秀和,毎田悠承,田沼毅彦,南部禎士,

国地C:鹿嶋俊秀,住宅·都市G:石井儀光

所外:

●研究テーマ1:熊本地震に関する検討

共同研究の名称:熊本地震で被災した既存コンクリート系建築物

の被害要因分析と地震後の継続使用性評価に関する検討

共同研究機関名:国立大学法人 東京大学,国立大学法人 東京 大学地震研究所,国立大学法人 京都大学,国立大学法人 東北 大学,学校法人 東京理科大学,株式会社 堀江建築工学研究所, 株式会社 戸田建設

研究テーマ2:中高層既存建築物に対する耐震性向上技術の開発
 1)共同研究の名称:建築物の地震後の継続使用性の確保を目的とした非耐力壁の耐震改修技術に関する研究

共同研究機関名:株式会社 安藤・間,株式会社 熊谷組,佐藤工 業 株式会社,戸田建設 株式会社,西松建設 株式会社,前田建 設工業 株式会社,京都大学

2) 共同研究の名称:地震後の継続使用に向けた杭基礎の耐震性能 評価・向上に関する研究

共同研究機関名:国立大学法人 東京工業大学,私立大学法人 芝 浦工業大学,戸田建設(株),一般社団法人コンクリートパイル建 設技術協会(COPITA),(株)フジタ,耐震杭協会

3) 研究会の名称:地震後の建築物の継続使用性を確保する設備シ

ステムの耐震性能グレードと耐震性能向上に資する対策に関する

研究会

研究機関名:建築研究開発コンソーシアム(主査:建研,幹事:大 林組,清水建設,新菱冷熱)

●研究テーマ3:被災建築物の継続使用性を判定する技術の開発

1) 共同研究の名称:被災建物の応答計測システム構築に関する基礎的検討

共同研究機関名:宇宙航空研究開発機構

2) 共同研究の名称: 3 次元データを用いた地震後の損傷評価手法の構築に関する基礎的検討

共同研究機関名:九州工業大学

3)研究会の名称:外乱影響による構造躯体の安全性評価手法の調 査研究会

研究機関名:建築研究開発コンソーシアム(主査:東大地震研,幹 事:建研,住友林業)

4) 共同研究の名称:被災建物の残留変形計測システム構築に関する基礎的検討

共同研究機関名:国際航業