Post Earthquake Quick Damage Inspection of Buildings in Nepal

Collaborative Research and Development (R&D) Project for Disaster Mitigation in Earthquake Prone Areas in Asia (Sep 27, 2007)

Presented By

Er. Sunil Kumar Thakur

DUDBC, NEPAL

Contents of Presentation

- Background of study
- Objective of study
- Theoretical fundamentals of building damage inspection
- Damage grade classification
- Quick inspection procedure (steps)
- Implementation plan for the quick inspections system in Nepal
- Conclusion and future research

Background of study

Why Quick Damage Inspection of Buildings in Nepal?

- Nepal is highly earthquake prone country
- A large stock of vulnerable buildings exists in the country (Non engineered masonry and light reinforced RC buildings)
- High risk of building damage even in moderate earthquake JICA and NSET Study
- In Kathmandu valley only more than 125,000 (50%) buildings can suffer partial or heavy damage in future great earthquake
- Government have no any plan or any system in place to cope with such situations after earthquake disasters .

Background of study

Scenario after earthquake

Is my building safe for reoccupy ?

Is my building safe to enter to get my personnel belongings ? Background of study

Quick damage inspection of buildings becomes the **first essential action** to be performed by the government to judge the safety of buildings and inform the habitants about the risk of damaged buildings.

This quick damage inspection of buildings helps

- To inform occupants about the safety of building
- •To prevent secondary disasters due to aftershocks.
- To make quick action for evacuation and estimation of temporary shelters

Objective of study

- To develop a methodology for post earthquake quick damage inspection of buildings typology of Nepal (standard inspection form, damage grade classification criteria of individual element and posting placards)
- To propose the formal mechanism for inspection system and a long term plan for capacity building to effectively implement the quick inspection system in Nepal

Resistance envelope of Plain and confined masonry wall

Resistance envelop of Typical Plain and confined masonry wall

On the basis of above calculation and some experimental results already proposed in M. Tomazevic & I. Kelmenc Paper and Peru papers the following value of angle of rotation (R) for plain and confined masonry wall of Nepal has been proposed in this study

	For plain masonry		For confined masonry	
	Values of	Proposed	Values of	Proposed
	R	value	R	value
Elastic	0.07% to	0.08%	0.07% to	0.09%
limit	0.09%		0.12%	
Max.	0.20% to	0.25%	0.30% to	0.50%
Resistance	0.26%		0.83%	
ultimate	0.46% to	0.50%	1.61% to	1.5%
State	0.66%		4.17%	

Relationship between lateral resistance and storey rotation

Damage grade classification

Damage grade classification of individual members (In-plane failure)

Hairlines cracks in the splendor portion of wall - Damage grade I

Diagonal oriented cracks up to the upper portion of solid wall -Damage grade II

Damage grade classification

Damage grade classification of individual members (in-plane failure)

Heavy diagonal cracks, width > 6 mm passing through masonry units of pier - Damage grade III Severe cracks in upper wall and significant movement along plane – damage grade III

Damage grade classification

Damage grade classification of individual members (Out of plane failure)

Moderate vertical crack throughout the height of the wall - Damage grade II

Widened vertical crack throughout the wall and significant splitting of mortar -Damage grade III

- Step 0 : Description of Inspected Building
- Step 1 : General Inspection of Entire Building
- Step 2 : Structural Safety
- Step 3 : Nonstructural Safety
- Step 4 : Sub-summary
- Step 5 : Summary

Step 0 : General Information about inspection and inspected buildings

ID Code : ______Serial No. Number of Inspections : ____ Time and Date of Inspection : __: _, Year__ / Mon._ / Day __ Name of Inspector(s) (Affiliation / ID Number)

Description of Inspected Building

1. Address :

2. Contact Person : _____

3. Building Use :

1. Individual House, 2. Residence with Commercial Use

Tel :

3. Govermental building ,4. Office, 5. Hospital, 6. Hotel

7. Others (_____

4. Type of Structure :

[]Bricks wall []Hollow concrete blocks []Stone walls []Others (_____)

5. Number of Stories :

1. One storied 2. Two storied 3. Others (<u>)</u> 6. Size of building Dimensions of the first floorm X......m

Step 1 :General inspection of entire buildingInspection 1 :The degree of danger judged from generalinspection of the entire Building

If a building is obviously unsafe due to following damage, mark the corresponding reasons, identify the building "Unsafe". Stop the inspection 2& 3.

[] Total or Partial Collapse and fallen

floors of the building

- [] Significant Damage to Superstructure /Remarkable Offset of Superstructure from Foundation
- [] Significant Inclination of Entire Building or Individual Storey

[] Others

Step 2 : Structural Safety

Inspection 2. The degree of danger judged from the hazard from

adjacent buildings, surrounding ground and structural elements

	Rank A	Rank B	Rank C
1. Presence of danger caused by damage from adjacent buildings or surrounding ground Failure	[] No	[]Uncertain	[] Yes
2. Settlement of building due to gr. failure	[]<0.2 m	[]0.2-1.0m	[] > 1.0m
<i>3a. Inclination of building due to differential settlement (For plain masonry building)</i>	[] < 1/400	[] 1/400- 1/200	[] > 1/200
<i>3b. Inclination of building due to differential settlement (For confined masonry building)</i>	[] < 1/200	[] 1/200- 1/65	[] > 1/65

Step	2	•	Structural	Safety	(Continued)
------	---	---	-------------------	--------	-------------

	Rank A	Rank B	Rank C
<i>4 Damage to load bearing wall 1. Inspect the most seriously damaged sto of damaged walls of grade III and II an</i>	orey, sketch bui od fill up the fol	ilding and measu lowing 4-a and 4-	ire the length b
<i>4-a. <u>Ratio of damage III</u> [(length of wall of damage grade III / Inspected length)X100]%</i>	[] < 1%	[] 1%-10%	[]> 10%
<i>4-b. <u>Ratio of damage II</u> [(length of wall of damage grade II Inspected length)X100]%</i>	[] < 10 %	[] 10%- 20%	[]> 20%

Structural safety judgment from 1 to 4 [] Inspected (When all items are given rank A)

[] Limited entry [] Unsafe (When Rank B >= (When Rank C >= 1) 1 but C = 0)

or Rank B >= 2)

Step 3 : Nonstructural Safety <u>Inspection 3</u> : The degree of danger caused by falling and/or overturning of objects

	Rank A	Rank B	Rank C
 Frame and glass of the window wall 	[] No damage	[] Visible Deformation and/or cracks	[] Danger of falling
2. Stairways [] Interior [] Exterior	[] No damage	[] Slight damage	[] Significant damage
3. Elevated water tank, chimney, signboard, machinery etc.	[] No inclination	[] Slight inclination	[] Danger of falling down
4. Others Hazard()	[] No damage	[] Special attention reqd.	[] Life threatening
Judgment of the degree of danger of Nonstructural eler from 1 to 4.	nent (only A a	ECTED []LI nd / or B) (C >=	MITED ENTRY = 1)

Step 4 : Sub-summary

1. Check one in inspection 2 and 3, and then choose the highest rating among them as the OVERALL RATING.

	INSPECTED	LIMITED ENTRY	UNSAFE
Inspection 2 (Structural safety)	[]	[]	[]
Inspection 3 (Non structural safety)	[]	[]	
OVERALL RATING. Check the highest rating among Inspections above.	[]	[]	[]

Step 5 : Summary

Overall Rating INSPECTED

LIMITED ENTRY

On the basis of above result buildings are posted with one of the following placards

Red placard posted after Nigaata earthquake (16,July 2007)

Implementation plan for the quick inspections system in Nepal

Plan of inspection practice

1. Decision of quick damage inspection practice		2. Declaration of quick damage inspection practice Set up quick damage inspection		
District administration office	District Natural Disaster Relief Committee	emergency office		
Chief District	Chief of district	natural disaster relief committee		
Officer	Disaster information	 Decision for quick damage inspection practice Set up Quick damage inspection emergency office 		
Local	Municipality/	Nomination of		
governments	VDC concerned Collect information on disaster	Chief of quick damage inspection emergency office (Division chief of DUDBC, Division office)		

Implementation plan for the quick inspections system in Nepal

Conclusions and future research

The proposed inspection sheet and damage grade classification criteria for damage assessment of buildings will provide uniformity in inspection procedure in Nepal

The proposed operation plan and organization structure will help to execute the operation quickly in post earthquake phase and to organize in pre earthquake period.

This study will help as basic tool to develop detail manual.

The study will be a meaningful step for post earthquake emergency risk mitigation in Nepal

 Damage grades classification criteria and value of R proposed in this study are based on theoretical analysis and judgment, hence it requires further study and research based on field for more accurate value.

Thank You for Your Attention