(研究期間 平成 16~17 年度)

- 7 木質複合建築構造技術の開発フォローアップ

Follow-up Project on Timber-based Hybrid Building Structure

		(111) 5745	
構造研究グループ	河合直人	井上波彦	
Dept. of Structural Engineering	Naohito Kawai	Namihiko Inoue	
材料研究グループ	中島史郎	山口修由	
Dept. of Building Materials and Components	Shiro Nakajima	Nobuyoshi Yamaguchi	
防火研究グループ	萩原一郎	増田秀昭	成瀬友宏
Dept. of Fire Engineering	Ichiro Hagiwara	Hideaki Masuda	Tomohiro Naruse

As a follow-up project after the R&D project on timber-based hybrid structures from F.Y. 1999 to 2003, studies for practical use of hybrid structures were made on both fire and structural issues. A fire test on an actual seize one room fire-resistive structure was performed and it revealed self-extinguishable behavior of composite members. And shaking table tests on two scaled models of mixed structure were performed, and the applicability of quasi-three-dimensional models was confirmed. Additionally, experimental studies on joint using carbon fiber sheet were conducted to develop the highly efficient jointing systems.

[研究目的及び経過]

本課題は、平成 11 年度から 15 年度にかけて行われた 課題「木質複合建築構造技術の開発」の成果を受けて、 木材をあらわしにできる耐火構造の木質複合部材に関す る防火関連の技術開発、及び開放的で耐震的な木質構造 を可能とする平面的ハイブリッド構造に対する構造設計 法の開発を主な目的とした。併せて、典型的な木質ハイ ブリッド部材の効率の高い接合部の開発を行った

[研究内容]

1.防火に関する技術開発

(1) 接合部、詳細部の技術開発

木質複合部材は、一般の不燃材料で構成される耐火 構造と異なり、部材の炭化による断面欠損が進行するた め、部材相互の接合部及び壁や床との取り合い部におけ る燃え抜けによる延焼拡大が危惧される。こうした接合 部や、スイッチ、コンセントボックスの防火処理対策等 について、耐火試験による検証を行った。

(2) 実大火災実験

木質複合部材を柱、梁に用いた4階建て事務所の1階 部分を想定した約4×4mの平屋建てで、実火災におけ る各部材の燃焼性状、火災終了後の被害状況、詳細部納 まりの防火処理の有効性などを確認するとともに、鋼材 断面寸法の異なる短柱部材を同時に燃焼させ、熱伝導解 析に必要なデータ収集を行った。実験建物概要を写真1 に示す。

- 2.構造に関する技術開発
- (1) 平面的複合構造の地震時挙動

木質構造と鉄筋コンクリート構造や鋼構造など他の

写真1 実大火災実験建物概要

図1 模型振動実験試験体見取り図

構造とを平面的に複合した構造物の、地震時の挙動、地 震力の分布、各部の応力や変形を確認し、耐震設計法の 妥当性を検証するため、平面的複合構造の模型振動実験 を行った。試験体は、木質構造(壁式構造)と鋼構造 (プレース構造)の平面的複合構造、5階建て3分の1 の縮小模型2体である。図1に試験体の見取り図を示す。 (2) ハイブリッド技術による接合部の性能向上

CF シートによる木質部材接合部の繊維直交方向せん 断強度の補強効果及び繊維方向せん断強度の補強効果を 調べるために、CF シートで木材の接合面を補強した鋼 板挿入式ドリフトピン接合部の実験を実施した。

[研究結果]

1.防火に関する技術開発

(1) 接合部、詳細部の技術開発

耐火試験による検証結果に基づき、木質複合部材の 接合部、床壁との取り合い部、コンセントボックスの防 火処理対策等の設計・施工マニュアルを整備した。 (2) 実大火災実験

実験建物の火災継続時間は図2に示す通り、標準建物 火災(ISO-834)換算で概ね40分燃焼が継続した。代表的 なはり部材の温度履歴を図3に示す。本実験においても、 部材毎による耐火試験と同様に燃え止まりが確認され た。また、被覆材として用いたカラマツ集成材の燃え 止まりまでの炭化は、火熱を受ける状態によって異な るが顕著な部分では概ね30~35mmに達した。納まり 部および詳細部の防火対策では、壁構造と柱構造との 接合部において、柱部にちり納まり加工を行い壁の不 燃仕上げ材を挿入した防火仕様を施した結果、燃え抜 け防止効果の有効性が明らかとなった。

2.構造に関する技術開発

(1) 平面的複合構造の地震時挙動

振動台実験における神戸 NS、目標最大入力加速度 2G の際の A 棟、B 棟の最大振幅時の振動形を、平面的な変 形として図 4 に示す。A 棟では、鋼構造部分が最上階ま であるために、全体の捻れ変形や水平構面のせん断変形 が抑制され、その結果最も変形が集中する Y01 通りの最 大応答変位は B 棟の 78%程度に納まった。併せて行った 解析では、疑似 3 次元振動モデルを用いた時刻歴応答計 算及び等価線形化法の適用により、概ね実験結果を予想 できることが明らかとなった。これに基づき、木質複合 建築構造に対する汎用的な耐震設計法として、簡易な疑 似 3 次元モデルの増分解析をベースとした限界耐力計算 の具体的手法を取り纏めた。

(2) ハイブリッド技術による接合部の性能向上

繊維直交方向せん断加力試験の結果の例を図5に示す。 CFシートによるせん断強度の向上としては、7mm厚の CFシートで補強した場合、繊維直交方向せん断強度が 3倍程度、繊維方向せん断強度が1.5倍程度増加し、い ずれの場合も変形性能も向上することが確認された。

