1章 非住宅建築物の省エネルギー技術が置かれた状況

1.1 省エネルギー基準改正の背景と動向

2015 年 7 月，国の地球温暖化対策推進本部は気候変動枠組み条約の目的達成のための日本の約束草案を決定した。温室効果ガス排出を 2050 年に世界で半減，先進国全体では 80% 削減するという， 2008年 G8北海道洞爺湖サミット以来保持されてきた長期目標に沿い作成された 2030 年度に向けた計画で ある（図 1－1）。

図 1－1 日本の約束草案
（数値は「日本の約束草案」地球温暖化対策推進本部，2015年7月による）

民生部門（事務所や商業施設などの「業務その他部門」と「家庭部門」を合わせた分野）における約 4 割の二酸化炭素排出量の削減は，電力などエネルギー源の低炭素化と建物側のエネルギー消費の削減 とを合わせて達成されるべきものであるが，後者の工ネルギー消費の削減については「業務その他部門」 が 2030 年度までに 14% の削減，「家庭部門」が 27% の削減が目標値となっている。民生部門全体と しては2030年度までに2013年度比で 20% のエネルギー消費量削減が目標とされている。

従来の建築物の省工ネルギー基準は，工場や運輸部門と合わせて省工ネルギー法の中に拠り所を置い てきたが，2015 年 7 月，「建築物のエネルギー消費性能の向上に関する法律」（略称「建築物省工ネ法」）として独立した法律となった。この動きは，かねてから建築物に対する省エネルギー基準の適合義務化の必要性が広く認識されてきたことに深く関わるものである。それに先だって 2013 年 1 月に抜本的に改正された建築物のための新たな省エネルギー基準（平成 25 年省工ネ基準）が告示され，その時点で一次工ネルギー消費量を尺度とする評価手法が導入され，さらに，2017年4月からの $2000 \mathrm{~m}^{2}$以上の非住宅建築物対象の適合義務化のために告示改正が実施された（平成 28 年省工ネルギー基準）。

さらに，2019 年 5 月に改正建築物省エネ法が施行されたことにより，適合義務化の非住宅建築物の対象が 2021 年 4 月からは $300 \mathrm{~m}^{2}$ 以上まで広げられることになっている。

エネルギー消費量の表現方法には，一次エネルギー換算と二次エネルギー換算の二種類の表示方法が あり，電力の換算係数は前者の場合は $9,760 \mathrm{~kJ} / \mathrm{kWh}$ ，後者の場合は $3,600 \mathrm{~kJ} / \mathrm{kWh}$ である。一次工 ネルギー換算係数に対する二次エネルギー換算係数の比（ $=3,600 \div 9,760=0.369$ ）は，火力発電所に おいて発電に用いられる燃料（石油や天然ガス）のもつエネルギーのうち，発電や送電時のロスを除いて需要家に電力エネルギーとして届けられるエネルギーの比率を示している。

建築物の省エネルギー基準では一貫して一次エネルギー換算されたエネルギー消費量，即ち一次エネ ルギー消費量によって省エネルギー性能が評価されてきており，本書においても一次エネルギー消費量 の削減のためには何をすべきか，を中心に技術的情報を整理することとする。

省エネルギーのための設計や施工は，前述のような国策や法制度の強制力によって対応せざるを得な い側面はあるものの，建物の所有者や使用者にとつては光熱費の節約や業務効率の向上にもなる。また，本書などを通じて技術を取得し対応力を増強することは，建築を造る側にとつては市場における競争力 を高めることにつながる。

平成 28 年省エネルギー基準では，エネルギー消費量の多寡を評価するためのツールとして，「標準入力法」に加えて簡便な評価方法である「モデル建物法」（建物形状や設備構成をある程度固定するこ とにより入力情報を減らした方法。標準入力法に比べてより安全側の評価がなされる。）が導入されて いる。法への対応は簡便な「モデル建物法」を用いて行われることが多いが，本書では特に5章にお いて，「標準入力法」を用いて設計内容と一次エネルギー消費量との関係を平易に解説する。

1.2 新制度の特徴

平成 28 年省エネルギー基準では，非住宅建築物のための適合性判定の手続き（図 1－2）のように定 められていて，着工許可に必要な「確認済証の交付（4）」には「省工ネ適合判定通知書」を建築主事等に提出する必要がある。同通知書の取得のためには所管行政庁等（登録建築物工ネルギー消費性能判定機関を含む）に対して設計図書や一次エネルギー消費量計算書を提出し，計算入カデータが図面や機器仕様と整合しているか等の審査を受けなければならない。また，竣工後においては建物の使用開始前に，図面通りに建物や設備が造られているかの確認のため，「完了検査（7）を受けなければならない。
このように，設計図書に記載された内容に沿って入カデータが作成され，設計一次工ネルギー消費量 の計算がなされているか，及び設計図書通りに建物及び設備が建設されているかの確認を要する点が，従来にはなかった新制度の特徴であると言うことができる。

図 1－2 適合性判定のために必要な手続きと流れ

1.3 エネルギ一消費量計算の方法

非住宅建築物の工ネルギー消費量の多寡に影響を及ぼす要因として，建物や部屋の使われ方がある。 そのため，平成 28 年省工ネルギー基準のための計算法においては 8 つの建物用途について計 201 の室用途を定義し，各室用途について標準的な空調時間，内部発熱量，新鮮外気導入量，換気時間，基準設定換気回数，照明点灯時間，基準設定照度，給湯日数，基準設定給湯量などを設定している（表1－ 1 に示す）。また，気象データとしては拡張アメダス気象データ（（社）日本建築学会）における 1981年～1995年の間の標準年データを使用し，日本全国を 8 つの地域に区分，各々の地域の代表地点の気象データを基準一次エネルギー消費量及び設計一次エネルギー消費量の算出に用いている。

1 地域から 8 地域の地域区分は，市区町村毎に国土交通省告示によって定められているが，ここ 20年余りの間における平均的な気温上昇に考慮して，気象庁による直近のメッシュデータに基づき 2019年 11 月に改定されており，2021 年 4 月 1 日以降は旧地域区分は使用できなくなることに注意が必要 である。なお，エネルギー消費量計算に使用される各地域の代表気象デー夕は同一のものが引き続き使用される。

各用途の工ネルギー消費量の計算結果は，計算のためのロジックや使用する物性値や設備機器の特性値に影響される。そのため，基本的なロジック及び物性値等は国立研究開発法人建築研究所のウェブサ イト（http：／／www．kenken．go．jp／becc／index．html）を通じて公表されており（図 1－3 にロジックに関する公開資料の一覧を示す。省工ネ手法は効果の裏付けの明確となっているものが評価対象とされて いる。），それらに則って作成されたウェブ上で動作するプログラム（「ウェブプログラム」と称して いる）が無償で使用することができる。本書では，非住宅建築物を対象として複数種類提供されている ウェブプログラムの中で「標準入力法」と呼ばれる基本となるプログラムを使用する。今後この「標準入力法」と同様に省工ネルギー基準のための計算に使用できるプログラムが第三者により提供されるこ とはあり得るが，ウェブプログラムとの同等性が確認可能でなければならないため，1）計算口ジックが公開されること，2）ロジックから判断してほぼ同等の評価となること，3）室使用条件•材料の物性値•熱源機器特性などは同一のものを用いること，などが要件となる。

本節の最後に，エネルギー消費量の計算法が省エネルギー建築の設計においてなぜ必要であるかを記 す。

第一に，省エネルギー建築の設計の最大の目的が，エネルギー消費量の削減にあるのであれば，設計内容を評価するための指標はエネルギー消費量そのものである必要がある，

第二に，省エネルギーのための要素技術が複数存在する場合に，それらの優劣を比較するためには，適用した場合のエネルギー削減量を知る必要がある，

第三に，実務者が必要とする省エネルギー建築実現のための単純な法則を見いだすためには様々な設計内容に関するエネルギー計算事例を蓄積する必要がある，ためと言える。

表 1－1 標準室使用条件（建物用途：事務所等の例）

室用途名称										
事務室	3374	12	0.1	12	5.0	－	－	3133	241	3.8
電子計算機事務室	3374	12	0.1	30	5.0	－	－	3133	241	3.8
会議室	2410	10	0.25	2	12.0	－	－	2169	241	3.8
喫茶室	2410	10	0.25	2	12.0	－	－	2169	241	32［L／m² ${ }^{\text {日 }}$ ］
社員食堂	723	30	0.5	0	15.0	－	－	723	241	48［L／m²］
中央監視室	8760	20	0.15	30	4.0	－	－	8760	365	3.8
更衣室又は倉庫	3374	15	0.3	0	4.0	3133	5	3133	241	62
廊下	3133	15	0.03	0	2.5	－	－	3133	－	－
ロビー	3133	15	0.03	0	2.5	－	－	3133	241	3.8
便所	3133	15	0.03	0	2.5	3133	15	3133	－	－
喫煙室	3133	15	0.03	0	2.5	3133	30	3133	－	－
厨房	－	－	－	－	－	2000	50	2000	－	－
屋内駐車場	－	－	－	－	－	3500	10	3500	－	－
機械室	－	－	－	－	－	8760	5	200	－	－
電気室	－	－	－	－	－	8760	10	200	－	－
湯沸室等	－	－	－	－	－	2000	5	1000	－	－
食品庫等	－	－	－	－	－	2000	5	1000	－	－
印刷室等	－	－	－	－	－	2000	10	1000	－	－
廃棄物保管場所等	－	－	－	－	－	2000	15	1000	－	－

2．エネルギー消費性能の算定方法
｜ 2.1 算定方法

図 1－3 設計一次工ネルギー消費量等の計算口ジック等の掲載ウェブサイト画面例（文献4）

1.4 省エネルギー基準の主旨とガイドラインの必要性

省エネルギー基準は，特に非住宅に関しては，適合義務化の導入によって基準適合していない場合に は建築許可や建物の使用許可が降りない，という厳格なものであり，それに見合った運用が求められる ものである。そのため，建物のエネルギー性能に関する評価方法には「透明性」と「根拠」（評価方法 が合理的であることの裏付け）が何よりも求められる。

「透明性」とは，評価のために各種図面や添付書類（部材や設備機器の試験結果や自己適合宣言書類等）に記載されたどの数値を用い，どのような演算をして一次エネルギー消費量や外皮性能値を導出す るか，及び試験結果が如何なる試験方法に基づいて行われたか，を包み隠さず公表することである。求 めに応じてデータを入力すれば何らかの評価結果が出ているだけのブラックボックスでは，省エネルギ一基準の評価法としては不適格とされる。

「根拠」とは，演算方法や数値の妥当性を裏付ける，その技術が実際の建物で使用される条件に近い条件で得られたデータを用いた論理的説明のことである。

同時に，省エネルギー基準においては，建築主（申請者）による「建築物省工ネ性能確保計画」の作成（図 1－2）や所管行政庁等による「建築物エネルギー消費性能適合判定基準への適合審査」（同）が許容できる範囲内の手間と費用で可能でなければならない。つまり，透明性や根拠があったとしても，申請書類を作成するのに過度に煩雑な評価方法は受容されない，と同時に評価内容がルールに則ってい ることの審査が過度に煩雑なものとなる評価方法も受容されないのである。

一方，省工ネルギー基準の適合性判定は，設計内容が基準を満たすか否かを判断することが主旨であ って，どのように設計することで省工ネルギー性能が向上するかについては明示的に情報を提供してく れるものではない。また，それが一つの原因となって，1980年以来の非住宅建築物の省工ネルギー基準の歴史的特徴として，従前の「省エネルギー計画書」はその作成を専門とする者に委ねられ，設計か ら評価の流れは一方通行であって，省エネルギー基準が設計に活用される程度については課題が存在し てきたと言えよう。

そこで本書は，新たに開発された平成 28 年省エネルギー基準のためのエネルギー性能評価法を設計実務に応用すること，一連の新たに得られた知見を設計に活かし易い形で表現しなおし，設計における意思決定に利用してもらうことを旨としている。

本書が読者として想定するのは，非住宅建築物の省エネルギー設計に関わる実務者であるが，そうし た実務者の職種は広範に及ぶと言える。意匠設計者にとつても外皮の熱的性能や空調方式の選定や配置計画などは関係があろう。設備設計者といっても空調設備，給湯設備，照明設備など分野は多岐にわた る。オーダーメード的に製作される建築設備，特に空調設備の場合は施工段階での機種選定やその変更，竣工前における試運転調整（単に動くだけの確認にとどまらない風量バランス調整や送風機・ポン プの出力調整など）に関するノウ八ウも欠かせない。組み立てられる部品（熱源，空調機，照明器具な ど多様な機器）の製造者に属する技術者も本書に関心を持ってほしい実務者である。

