6.1 一般事項

6.1.1 建築物概要

本建築物は、地上 12 階建て鉄骨造による片コア 形式の事務所ビルである。表 6.1 に建築物概要、図 6.1 に基準階平面図、図 6.2 に立面図を示す。基準階 スパンは、X方向が 7.2m、Y方向が 14.4m、9.5m ス パンを有しており、基準階高は 4.0m である。本設 計例では、保有水平耐力計算等により設計された建 築物について、本報告で提案された鉄骨造梁端部の 設計用疲労性能評価式を用いたエネルギー法の計 算方法に基づき、極稀地震等の地震入力に対する耐 震安全性を確認するための検討を行う。

表 6.1 建築物概要

建築物名称	S12-オフィスビル
所在地	東京都23区内
用途	事務所
構造種別	鉄骨造
建築面積	1,030. $3m^2$
延床面積	12, 402. $1m^2$
階数	地上12階、塔屋1階
高さ	軒高48.7m、最高高さ54.3m
階高	4.5m(1階)、4.0m(基準階)
基礎地業	杭基礎

6.1.2 地盤概要

地盤は、地表面から 20m までの粘性土層と、それ以深に分布する砂礫層から構成されている。 粘性土層はN値8の沖積層で、単位体積重量 15.5kN/m³、せん断波速度 Vs=200m/s である。砂礫 層は、N値50以上の堅固な洪積層で、せん断波速度 Vs=400m/s 以上の工学的基盤としている。 地盤構成から液状化しないと判断でき、地盤種別は第二種地盤としている。土質柱状図を図 6.3 に 示す。

6.1.3 構造計画

本建築物の構造概要を表 6.2 に示す。主体構造は鉄骨造とし、X、Y方向ともに架構は純ラーメン構造である。平面計画はねじれの生じない整形なものとしている。1 階の柱脚は埋込柱脚とし、 基礎は GL-20m の砂礫層を支持層とした杭基礎としている。

	基礎形式	杭基礎
基礎構造	地盤種別	第二種地盤 (地盤地域係数Z=1.0)
	支持層	砂礫層
	種別	鉄骨造
	骨組形式	X方向:純ラーメン構造
		Y方向:純ラーメン構造
主体構造	柱梁接合部	接合部:梁通し方式(外ダイアフラム)
		柱接手:現場溶接
		梁接手:高力ボルト摩擦接合 (F10T)
	床形式	鉄筋コンクリート造(合成スラブ用デッキプレート)
	非耐力壁	外壁:Pca版、ALC版
		内壁:ALC版、軽鉄下地ボード張り

表 6.2 構造概要

6.1.4 計算フロー

本設計例における計算フローを図 6.4 に示す。保有水平耐力計算等により設計された建築物に ついて、本報告で提案された鉄骨造梁端部の設計用疲労性能評価式を用いたエネルギー法の計算 方法に基づき、極稀地震等の地震入力に対する耐震安全性を確認するための検討を行う。

6.1.5 準拠する法令等

本設計例では、以下の法令等に準拠し検証を実施する。

- ・建築基準法、同施行令、建設省/国土交通省告示
- ・国土交通省住宅局建築指導課 監修「2020 年版 建築物の構造関係技術基準解説書」
- ・日本建築センター「2018 年版 冷間成形角形鋼管設計・施工マニュアル」

6.1.6 使用材料、許容応力度および材料強度

表 6.3~表 6.7 に使用材料、許容応力度、材料強度を示す。

衣 0.3 使用材料								
	柱:冷間成形角形鋼管	: BCP325						
鉄骨	梁: 圧延H形鋼材	: SN490B						
	ダイアフラム:鋼板	: SN490C						
24. 67	D16以下の異形鉄筋	: SD295A						
¥大 肋	D19以上の異形鉄筋	: SD345						
コンクルート	並通コンクリート (— 9.91-N/ ³)	:Fc21 (2~R階)						
コンシリート	普通コングリート ($\gamma = 23 \text{ kN/m}$)	: Fc30 (1階)						

表 6.3 使用材料

表 6.4	許容応力度	(鋼材)	
	the first state		

材料	基準強度	長期許容応力度				短期許容応力度			
	(N/mm^2)	圧縮	引張	曲げ	せん断	圧縮	引張	曲げ	せん断
SN490B BCP325	F = 325	F/1.5	F/1.5	F/1.5	F/1.5√3	長期許容応力度の1.5倍			倍

表 6.5 許容応力度(鉄筋)

材料	基準強度	長期許容	客応力度	短期許容応力度		
	(N/mm^2)	圧縮・引張	せん断補強	圧縮・引張	せん断補強	
SD295A	295	195	195	295	295	
SD345	345	215	195	345	345	

表 6.6 許容応力度(コンクリート)

材料	基準強度	長期許容応力度				短期許容応力度			
	(N/mm^2)	口嫔	北ノ斯	付着		口嫔	井ノ斯	付	着
		/工 州日	せん肉	上端筋	その他)工. 州日	1 C N M	上端筋	その他
普通コン	21	7.0	0.70	1.40	2.10	14.0	1.05	2.10	3.15
	30	10.0	0.79	1.70	2.55	20.0	1.18	2.55	3.82

表 6.7 材料強度(鋼材)

材料	基準強度 (N/mm ²)	圧縮	引張	曲げ	せん断
SN490B BCP325	F = 325	1.1F	1.1F	1.1F	1.1F/√3

6.1.7 構造概要

(1) 梁伏図および軸組図

図 6.5 に 2~12 階梁伏図を、図 6.6 に軸組図を示す。

(2) 仮定荷重

本建物の設計用床荷重を表 6.8 に示す。

室名	固定荷重	重内訳(N	V/m^2			床·小梁用	骨組用	地震用	
屋根	押さえコンクリート	t100	$\gamma 23$	2,300					
(設備機器置場)	アスファルト防水			150					
	RCスラブ	t150	$\gamma 24$	3,600					
	デッキプレート			150	DL	6,500	6,500	6,500	
	天井・設備			300	LL	5,000	3,000	2,000	
		6,500	\leftarrow	6,500	TL	11,500	9,500	8,500	
事務室									
	フリーアクセスフロア			900					
	RCスラブ	t150	$\gamma 24$	3,600					
	デッキプレート			150	DL	4,950	4,950	4,950	
	天井・設備			300	LL	2,900	1,800	800	
		4,950	\leftarrow	4,950	TL	7,850	6,750	5,750	
鉄骨階段									
	モルタル	t50	γ20	1,000					
	鉄骨			1,000	DL	2,300	2,300	2,300	
	天井仕上げ			300	LL	2,900	1,800	800	
		2,300	\leftarrow	2,300	TL	5,200	4,100	3,100	
各種重量	パラペット h=600mm	5,000 1	N/m						
	外壁:ALCパネル	1,350	N/m^2						
	柱(仕上げ・耐火被覆)	550 p	N/m^2	(鉄骨自重含)	まず)				
	梁(耐火被覆)	150 r	V/m^2	(鉄骨自重含)	まず)				

表 6.8 設計用床荷重

(3) 仮定断面

本建物の柱断面を表 6.9 に、大梁断面を表 6.10 に示す。

階	C1	C2	С3	C4
12	□-550x550x22	□-550x550x22	□-550x550x22	□-550x550x22
11	□-550x550x22	□-550x550x22	□-550x550x22	□-550x550x22
10	□-550x550x22	□-550x550x22	□-550x550x25	□-550x550x25
9	□-600x600x22	□-600x600x22	□-600x600x28	□-600x600x28
8	□-600x600x25	□-600x600x22	□-600x600x32	□-600x600x32
7	□-600x600x25	□-600x600x25	□-600x600x32	□-600x600x32
6	□-600x600x28	□-600x600x25	□-600x600x36	□-600x600x36
5	□-600x600x28	□-600x600x25	□-600x600x36	□-600x600x36
4	□-600x600x28	□-600x600x25	□-600x600x36	□-600x600x36
3	□-600x600x28	□-600x600x28	□-600x600x36	□-600x600x36
2	□-600x600x32	□-600x600x28	□-600x600x40	□-600x600x40
1	□-600x600x36	□-600x600x28	□-600x600x40	□-600x600x40

表 6.9 柱断面表(材質 BCP325)

表 6.10 大梁断面表(材質 SN490B)

階	GY1	GY2	GY3、GY4	GY5	GY6
R	H-550x250x12x19	H-550x250x12x19	H-550x250x12x19	H-550x250x12x19	H-550x250x12x19
12	H-550x250x12x19	H-550x250x12x19	H-550x250x12x19	H-550x250x12x19	H-550x250x12x19
11	H-550x250x12x19	H-550x250x12x19	H-550x250x12x19	H-550x250x12x19	H-550x250x12x19
10	H-800x250x16x22	H-800x250x16x22	H-800x250x16x22	H-800x250x16x22	H-800x250x16x22
9	H-800x250x16x22	H-800x250x16x22	H-800x250x16x22	H-800x250x16x22	H-800x250x16x22
8	H-800x250x16x22	H-800x250x16x22	H-800x250x16x22	H-800x250x16x22	H-800x250x16x25
7	H-800x250x16x22	H-800x250x16x25	H-800x250x16x22	H-800x250x16x25	H-800x250x16x25
6	H-800x250x16x22	H-800x250x16x25	H-800x250x16x22	H-800x250x16x25	H-800x250x16x28
5	H-800x250x16x22	H-800x250x16x25	H-800x250x16x22	H-800x250x16x25	H-800x250x16x28
4	H-800x250x16x25	H-800x250x16x28	H-800x250x16x22	H-800x250x16x28	H-800x250x16x28
3	H-800x250x16x25	H-800x250x16x28	H-800x250x16x22	H-800x250x16x28	H-800x250x16x28
2	H-800x250x16x25	H-800x250x16x28	H-800x250x16x22	H-800x250x16x28	H-800x250x16x28

(4) 各階の質量

各階の質量を表 6.11 に示す。

階	Hi	Wi	ΣWi	Ai	Σ Wi/Ai
	(mm)	(ton)	(ton)	(m^2)	(ton/m^2)
12	4,000	1,090	1,090	1,030	1.058
11	4,000	772	1,862	1,030	0.749
10	4,000	772	2,634	1,030	0.750
9	4,000	793	3, 427	1,030	0.770
8	4,000	797	4,225	1,030	0.774
7	4,000	801	5,026	1,030	0.778
6	4,000	804	5,830	1,030	0.780
5	4,000	806	6,635	1,030	0.782
4	4,000	809	7,444	1,030	0.785
3	4,000	810	8,255	1,030	0.787
2	4,000	813	9,067	1,030	0.789
1	4,500	821	9, 889	1,030	0.797

表 6.11 各階の質量

(5) 地震力

一次設計時の地震力を表 6.12 に示す。

階	Hi	hi	Wi	ΣWi	αi	Ai	Ci	Qi
	(mm)	(mm)	(kN)	(kN)				(kN)
12	48,500	4,000	10,686	10,686	0.111	2.575	0.339	3,623
11	44,500	4,000	7,570	18,256	0.189	2.149	0.282	5,165
10	40,500	4,000	7,575	25, 831	0.267	1.907	0.251	6,486
9	36, 500	4,000	7,778	33, 609	0.347	1.734	0.228	7,673
8	32, 500	4,000	7,820	41, 429	0.428	1.599	0.210	8,720
7	28, 500	4,000	7,859	49, 288	0.509	1.486	0.195	9,641
6	24, 500	4,000	7,883	57, 171	0.590	1.387	0.182	10,441
5	20, 500	4,000	7,901	65,072	0.672	1.299	0.170	11,125
4	16,500	4,000	7,931	73,003	0.753	1.217	0.160	11,699
3	12, 500	4,000	7,947	80, 950	0.835	1.141	0.150	12,163
2	8,500	4,000	7,969	88,919	0.917	1.070	0.140	12,519
1	4,500	4,500	8,055	96,974	1.000	1.000	0.131	12,770
	・固有周期	朔 (sec)	Τ1	1.458	(T1 = 0.03H)	H = 48.6 m	1FL = GL+0.	1m)
	・地盤種別	別による係数	Тс	0.600	(第2種地盤)		
備考	・振動特性	生係数	Rt	0.658	(Rt = 1.6Tc	/T1)		
	・地域係数	汝	Ζ	1.000	(東京都23回	王)		
	・標準せん	ん断力係数	Со	0.200				

表 6.12 地震力

(6) 応力解析方針

応力解析は、ユニオンシステムの Super Build SS7 によって検討を行った。 主な解析条件を下記に示す。

① 応力解析方針

- ・応力解析は立体フレームマトリックス法により X 方向について行う。
- ・建物は1階柱脚において完全固定されているものとし、柱脚の浮き上がりは生じないものと する。
- ・各階床は面内で回転を許容した剛床と仮定する。
- ・柱、梁は材端に弾塑性ばねを有する線材に置換する。
- ・パネルゾーンは考慮しない。
- ・柱は部材の曲げ、せん断変形を考慮する。軸変形は水平荷重時のみ考慮する。
- ・大梁は部材の曲げ、せん断変形を考慮する。
- ・大梁の曲げ剛性はスラブの合成効果を考慮する。

(両側スラブ付き 1.5 倍、片側スラブ付き 1.25 倍)

- ・柱と梁の接合部の変形および剛域は考慮しない。
- ・解析モデルの初期剛性時の諸元は、部材の初期剛性に基づく値とする。
- ・各階の地震力は重心位置に作用する。
- ・解析の簡略化のため、ペントハウスはモデル化しない。

② 断面算定方針

- ・鉛直応力は節点位置、地震時応力はフェース位置を採用する。
- ・柱は二軸曲げを考慮する。
- ・大梁ウェブは考慮しない。

③ 保有水平耐力計算方針

- ・部材の復元力特性は、部材 M-δ 関係において Mu (Mu=Zp×σy、σy=1.1×F 値) に達した点を折 れ点とするバイリニアモデルに置換し、2 次勾配は弾性剛性の 1/1000 とする。
- ・梁の曲げ耐力はウェブおよびスラブ効果を考慮する。また、保有水平耐力接合および保有水平 耐力横補剛は満足されているものとする。
- ・外力分布は Ai 分布とし、荷重増分解析により、いずれかの階の層間変形角が 1/100 に達した 時点を保有水平耐力とする。
- ・冷間成形角形鋼管は、「2018 年版 冷間成形角形鋼管設計・施工マニュアル」に準拠し、柱梁 耐力比の検討を行う。各階において各接合部における梁接合部の複合耐力(大梁耐力の 1.5 倍 および接合部耐力の 1.3 倍の小さい方)の総和が、各接合部における柱耐力の総和よりも小さ いことを確認する。

6.2 保有水平耐力計算等に基づく設計

6.2.1 長期許容応力度計算結果

Y2 通りの応力図を図 6.7 に、検定比図を図 6.8 に示す。

図 6.7 長期応力図(Y2 通り)

(12F)	_	0.21 -	0.01 -	A 33 -	0.00 -	0.01	0.21 m
4000	0.42 cr 0.06 c 0.42 組	0.31 G 0.14 z 0.51 G 0.09 z 0.51 細	0.2107 0.107 0.4607 0.097 0.484	0.22 0 0.10 z 0.46 0 0.09 z 0.46 組	0.22 07 0.10 元 0.48 07 0.09 元 0.48 組	0.210 0.10 0.510 0.99 0.51#8	0.310 0.14で 0.420 0.06で 0.42組
(11F)	_	0.32 σ 0.11 π	0.18 m 0.09 m	0.19 σ 0.09 π	0.19 σ 0.09 π	0.18 σ 0.09 π	0.32σ 0.11π
4000	0.26 σ 0.03 τ 0.26 組	0.34 σ 0.04 τ 0.33 組	0.34 m 0.05 r 0.33組	0.36 m 0.06 r 0.35 組	0.34 σ 0.05 τ 0.33 組	0. 34 0. 04 0. 33 14	0.28 σ 0.03 τ 0.26 組
(10+)	_	0.30 σ 0.11 τ	0.18 σ 0.09 τ	0.19σ 0.09τ	0.19 σ 0.09 τ	0.18 σ 0.09 τ	0.30 σ 0.11 τ
416	0.31 σ 0.03 τ 0.29組	0.39 cr 0.04 z 0.38 組	0.38 cr 0.05 定 0.37組	0.39 σ 0.05 z 0.38組	0.36 cr 0.05 z 0.37組	0.39 σ 0.04 τ 0.38細	0.31 cr 0.03 z 0.29組
.(ar) ©	_	0.28 σ 0.07 τ	0.12 σ 0.05 τ	0.14 σ 0.05 τ	0.14 σ 0.05 τ	0.12 σ 0.05 τ	0.28 σ 0.07 τ
400	0.30 m 0.03 m 0.29組	0.38 cr 0.04 c 0.37 組	0.36 σ 0.04 τ 0.35 組	0.37 σ 0.05 τ 0.36組	0.36 cr 0.04 c 0.35 組	0.38 gr 0.04 z 0.37組	0.30 cr 0.03 c 0.29組
(8F)	_	0.28 σ 0.08 τ	0.12 σ 0.05 τ	0.14 or 0.05 z	0.14 σ 0.05 τ	0.12 σ 0.05 τ	0.26 σ 0.06 τ
4000	0.30 σ 0.02 τ 0.28組	0.38 J 0.04 z 0.36 組	0.37 σ 0.04 τ 0.35 組	0.37 σ 0.04 τ 0.36組	0.37 σ 0.04 z 0.35 組	0.36 σ 0.04 τ 0.36組	0.30 σ 0.02 r 0.28組
(7F)	_	0.24 σ 0.08 τ	0.12 σ 0.05 τ	0.13 σ 0.05 τ	0.13 σ 0.05 τ	0.12 σ 0.05 τ	0.24 σ 0.06 τ
400 2004	0.33 σ 0.02 τ 0.31組	0,42 σ 0,04 τ 0,40 組	0.41 σ 0.04 τ 0.39組	0.41 σ 0.04 τ 0.39組	0,41 σ 0,04 τ 0,39 組	0,42 σ 0,04 τ 0,40 組	0,33 g 0,02 g 0,31組
(6F)	_	0.23 σ 0.07 τ	0.10 σ 0.05 τ	0.12 σ 0.05 τ	0.12 σ 0.05 τ	0.10 σ 0.05 τ	0.23 σ 0.07 τ
400	0.34 σ 0.02 τ 0.32組	0.43 σ 0.03 τ 0.41 組	0.42 σ 0.04 τ 0.40 組	0.42 σ 0.04 τ 0.40組	0.42 σ 0.04 τ 0.40組	0.43 σ 0.03 τ 0.41組	0.34 σ 0.02 τ 0.32組
(51)	_	0.19 σ 0.07 τ	0.10 σ 0.05 τ	0.12 σ 0.05 τ	0.12 σ 0.05 τ	0.10 σ 0.05 τ	0.19σ 0.07τ
40	0.37 σ 0.02 τ 0.34組	0.46 σ 0.03 τ 0.44組	0.46 σ 0.04 τ 0.44組	0.46 σ 0.04 τ 0.44組	0.46 σ 0.04 τ 0.44組	0.46 σ 0.03 τ 0.44組	0,37σ 0,02τ 0,34組
(4r)	_	0.17 σ 0.07 τ	0. 10 σ 0. 05 τ	0.12 σ 0.05 ε	0.12 σ 0.05 τ	0.10 σ 0.05 τ	0.17 σ 0.07 τ
400	0.40 σ 0.02 τ 0.37組	0.50 σ 0.03 τ 0.48 組	0.50 σ 0.04 τ 0.48 組	0.49 σ 0.04 τ 0.47 組	0.50 g 0.04 g 0.48組	0,50 σ 0,03 τ 0,48 組	0.40 σ 0.02 τ 0.37組
(3F)	_	0.15 σ 0.06 τ	0.09 σ 0.05 τ	0.10 σ 0.05 τ	0.10 σ 0.05 τ	0.09 σ 0.05 τ	0.15 σ 0.06 τ
400	0.43 σ 0.02 τ 0.40組	0.54 σ 0.03 τ 0.51 組	0.54 <i>σ</i> 0.03 τ 0.51組	0.53 σ 0.04 τ 0.51 組	0.54 σ 0.03 τ 0.51組	0.54 σ 0.03 τ 0.51組	0,43 σ 0,02 τ 0,40組
(21)	_	0.13 σ 0.06 τ	0.09 σ 0.05 τ	0.09 σ 0.05 τ	0.09 σ 0.05 τ	0.09 σ 0.05 τ	0.13σ 0.05τ
400	0.42 σ 0.02 τ 0.39組	0.54 σ 0.03 τ 0.51 組	0.54 σ 0.03 τ 0.51 組	0.53 σ 0.04 ε 0.51組	0.54 σ 0.03 z 0.51 組	0.54 σ 0.03 τ 0.51組	0.42 σ 0.02 τ 0.39組
(1F)		0.11 σ 0.05 ε	0.09 σ 0.05 τ	0.09 σ 0.05 τ	0.09 σ 0.05 τ	0.09 σ 0.05 τ	0.11 σ 0.05 τ
4950	0.47 σ 0.02 τ 0.45組	0.58 σ 0.03 τ 0.57 組	0.59 σ 0.03 τ 0.57 細	0.58 σ 0.03 τ 0.56組	0.59 σ 0.03 τ 0.57 組	0.58 g 0.03 g 0.57 組	0.47 σ 0.02 τ 0.45組
1FL		0.14M	△ 0.14M △	0.12M	0.12M △	0.1401 Δ	0.14M
		v. 149 1 7200	9.129 3600 3600	v.izvi 7200 l	9.129 7200 I	9.129 3600 [3600]	v. 144 7200
		x1	x2 x2-3 x3	X4	X	X5-6 X6)
			図 6 0 三 t		() () () () () () () () () ()		

6-11

6.2.2 短期許容応力度計算結果

一次設計時の偏心率を表 6.13 に、剛性率を表 6.14 に、層間変形角を表 6.15 に示す。また、Y2 通りの短期応力図を図 6.9 に、短期検定比図を図 6.10 に示す。形状特性係数 Fe、Fs ともに 1.0、 層間変形角の最大値は 1/223 (3 階、10 階、11 階) で 1/200 以下となっている。

階	重心		偏心		偏心距離	水平剛性	捩り剛性	弾力半径	偏心率	形状特性
	gx	gy	рх	ру	еу	K	KR	re		係数 Fe
	(m)	(m)	(m)	(m)	(m)	(kN/mm)	(MNm)	(m)		
12	21.600	11.608	21.600	12.789	1.182	288.7	80,744	16.726	0.071	1.000
11	21.600	11.596	21.600	12.801	1.206	303.8	85,762	16.804	0.072	1.000
10	21.600	11.584	21.600	12.804	1.220	382.7	102,994	16.407	0.075	1.000
9	21.600	11.594	21.600	12.807	1.213	574.6	144, 529	15.860	0.077	1.000
8	21.600	11.601	21.600	12.827	1.227	622.5	154,051	15.732	0.078	1.000
7	21.600	11.605	21.600	12.810	1.205	640.1	160,001	15.811	0.077	1.000
6	21.600	11.609	21.600	12.786	1.178	668.2	164,910	15.710	0.075	1.000
5	21.600	11.612	21.600	12.805	1.194	678.1	170,039	15.836	0.076	1.000
4	21.600	11.614	21.600	12.723	1.109	692.1	176,089	15.952	0.070	1.000
3	21.600	11.615	21.600	12.639	1.024	713.5	184, 823	16.095	0.064	1.000
2	21.600	11.617	21.600	12.646	1.030	782.3	202, 481	16.089	0.064	1.000
1	21.600	11.617	21.600	12.710	1.093	1,237.9	329, 113	16.306	0.067	1.000

表 6.13 偏心率(X 方向加力時)

表 6.14	剛性率	(X 方向加力時)

階	Q	K	δ	h	rs	rs平均	Rs	Fs
	(kN)	(kN/mm)	(mm)	(mm)				
12	3,623	288.7	12.553	4,000	319		1.159	1.000
11	5,165	303.8	17.005	4,000	236		0.855	1.000
10	6,486	382.7	16.952	4,000	236		0.858	1.000
9	7,673	574.6	13.354	4,000	300		1.090	1.000
8	8,720	622.5	14.009	4,000	286		1.039	1.000
7	9,641	640.1	15.062	4,000	266	275	0.966	1.000
6	10,441	668.2	15.625	4,000	256	210	0.931	1.000
5	11,125	678.1	16.408	4,000	244		0.887	1.000
4	11,699	692.1	16.905	4,000	237		0.861	1.000
3	12, 163	713.5	17.047	4,000	235		0.853	1.000
2	12, 519	782.3	16.003	4,000	250		0.909	1.000
1	12,770	1,237.9	10.316	4,500	437		1.587	1.000

表 6.15 層間変形角(X 方向加力時)

階	構造階高	δ	層間変形角
	(mm)	(mm)	(mm)
12	4,000	13.244	1/302
11	4,000	17.949	1/223
10	4,000	17.951	1/223
9	4,000	14.205	1/282
8	4,000	14.909	1/268
7	4,000	16.011	1/250
6	4,000	16.604	1/241
5	4,000	17.412	1/230
4	4,000	17.863	1/224
3	4,000	17.944	1/223
2	4,000	16.840	1/238
1	4,350	10.867	1/400

				(14 -295)		(160) -404-			(160) 412-			(157) - 399-			(156) -406-			(171) -432	
RFL (12F)		113	-113 (31)	100 504	+ <u></u> 210 (+11)	66	606	-202 (#11)	60	600	-1189 (47)	60	592	-194 (+9)	59	579	-1173 (8)	61	432	7
	000	(21)	563C	(19)) /8240		(244)	/847C		(242)	6670		(238)	8470		(233)	/85 6C		(152)	7070
	Ĩ		-29	(16)	282		(208) - 602 /	366		(210)	365		(205)	35.6		(206) 	354		(209)	174
12FL (11F)		331	(-302 (-41)	67 606	(436 (4 81)	56	671	497 (783)	50	669	420 (779)	50	663	(423 (479)		666	421 (783)	37	453	7
	800	(133)	870C	(274)/14146		(306)	/14476		(306)	/1458C		(305)	14500		(305)	14870		(197)	12690
4451 (105)			200	(19) 55(496		(235)	561	-	(237)	560		(233)	555		(234)	555	_	(237) 	336
TIFL(10F)		222	 422 (-73)	72 593	4533 (+109)	55	678	- 537	51	674	\$20 (7106)	50	667	/524 (/-107)	50	668	(7111)	35	394	7
	4104	(165)	11550	(354	20160		(401)	20600		(399)	20430		(394)	20650		(396)	21290		(253)	18670
10.01 (0.0)			454	(27)	656		(349) 1967	967		-134 6) -1108	961	_	-1071	951			956			644
IVEL (9F)		292	1-746 (-147)	127 876	-9/49 (+218)	74	1043	-9/2	50	1032	-665 (7207)	50	1017	-896 (7209)		1022	-902 (7227)		560	7
	4000	(151)	1381C	(42)	25 950		(510)	26810		(505)	26370		(498)	26770		(499)	27530		(277)	2586C
051 (05)		_ [311	(28)	837	_	(368) 	996		-178	967	_		974		(350) 	972	_	-1238	546
art (01)		459	£769 (- 157)	111 1005	-1009 (-235)		1153	-9,83 (9236)	-51	1145	-9,84 (-,226)	-51	1133	-9,67 (-,229)	51	1136	-9,89 (-,240)	4	692	7
	4000	(215)	16010	(49	31670		(560)	33000		(557)	32310		(550)	32870		(557)	33830		(332)	/33200
8EL (7E)			402	(33)	958			1086		-1269	1080		-1234	1066			1090		-140,6	635
012 (71)		545	4947 (+204)	-T20 1124	-1,687 (-259)		1244	-1986 (-262)	-51	1238	-1949 (-252)		1225	-1956 (******		1250	-1,110 (-284)	-4	769	/
	4000	(258)	17770	(55)	37680		(615)	39230		(611)	38290		(605)	39050		(613)	39960		(367)	40990
7EL (6E)		_ [485	-110	1065		-1381	1214		-1,429)	1207		-1265	1195		-1,378	1203		-1592	69.6
//E (01)		587	71071 72371	-126 1253	-1230	66	1361	-12/15 1-2967	-51	1373	-11/9 (51	1362	-1193 (= 2 92)		1369	-1194 (=309)		805	/
	4000	(286)	19250	(61)	43696		(676)	4553C		(672)	44310		(666)	4524C		(675)	45 30C		(393)	49050
6FL (5F)		/	557	-127	1216	_	-1,458	1321	/	-1,479	1315	_	-1448	1303	_	-1444	1328	_	-1657	768
		669	-1245 (+284)	130 135	(-217)	62	1431	-1285 (-328)	-52	1426	-1282 (=347)	-51	1414	-1269 (=341)		1455	-1340 (-350)		669	/
	4000	(334)	20300	(66)	50020		(705)	51860		(703)	50360		(697)	51500		(718)	5244C		(432)	/5755C
5FL (4F)			646	-188	1319		-1/517	1366	-	-1/537	1364	<i></i>	-1810	1372	-	-1/503	1415		-17,78	636
	_	/21	-1366 (4317)	-133 141.	(-238)	59	1462	-1382 (-338)	-52	14//	-1324 (-328)	51	146/	-1329 (-328)	51	1502	-1475 (-342)	-18	901	/
	400	(357)	21080	(71	56 600		(744)	5826C		(741)	5648C		(737)	5784C		(751)	5859C		(445)	66300
4FL (3F)			706	-146:	1423	-	-1600	1492	-	-1612	1486	-	-1589	1478	-	-1593	1500		-17/0	677
		/46	(71453 (7338)	140 147	(-355)	61	1534	(-358)	52	1526	-1403 (-350)	- 52	1522	-14/1 (-361)	54	1535	(-362)	-25	904	/
	400	(361)	21660	(74) (74)) 6324C		(767)	64760		(765)	62650		(761)	64230		(770)	64940		(456)	75190
3FL (2F)		- 100	774	-152	1487	6	-1597	1533	-	-1607	1529	-50	-1590	1523	~	-1589	1541		-17/64	919
		132	(X355)	130 1433	(-253)-	- 01	1400	(-355)	- 32	1402	-1405 (-359)	- J2	1477	(-351) 	00	1900	(-384)		003	/
	400	(415)	2214C	(76))/7013C		(780)	71320		(778)	66670		(776)	70700		(787)	71330		(477) 6475)	84150
2FL (1F)		- 414	926	-137	1611	-5	-1389	1633	-53	-1397	1629	-65	-1387	1625	-15	-1382	1648	-14	-15/2	1042
		414	(-31-2)	120 37.	295		300	1207	52	3/0	(294)	52	200	(293)	00	331	123271	- 14	550	/
	49.50	(487)	23120	(p)	77240		(7/4)	7796C		(7/6)	7515C		(714)	7727C		(726)	7779C		(543)	9264C
			10.05	5796	1000		(579)	15.67		1618)	15.74		1614)	15.67		(597)	1601		(702)	0156
1FL	L		1993 4-1995 (-191)	605	4-746		7 -1309	2307 2-978	208	1030 Z	2-938	183	/ -1040 2	-922		1040 - سمير ر	2001 	-11	/ -2 136	2100
			(-201)		(-70)			(°109)			(~104)			(-00)			4 193)			
			<u> </u>	/200	1 364	00	3600		/200			7200		3600	· 1	3600	l	7200		L
		Х	.1		X2	X2-3	Х	3		Х	4		Х	5	X5-6)	.6)	.7

図 6.9 短期応力図(Y2 通り)

RFL (12F)		0. 25	θp	0. 32	Мр — 0.49 ст	0. 3	32Mp 0.50 or	- 0. 30Mp	0.32	Мр — 0.49 ст	0. 3)	2Mp0. 53 σ	0.	2.5Mp
	4000	0.49 σ 0.10 τ	0.15 z	0.57σ 0.13τ	0.14 z	0.56σ 0.13τ	0.14 τ 0.54 0.13	0.14 τ 4 σ 3 τ	0.56 σ 0.13 τ	0.14 τ	0.57σ 0.13τ	0.15 ε	0.49σ 0.10τ	
12FL (11F)	+	0.49組 0.391	Vip	0.56組 	Mp	0.57組 	0.55 52Mp	5組 - 0.53Mp	0.57組 	Mp	0.58組 	3Mp	0.49組 	3 9Mp
	4000	0.40 σ 0.09 τ	θ. 19 ε	0.47 σ 0.12 τ	θ. 18 τ	0.48 σ 0.12 τ	0.19 z 0.56 0.11	0.19 z 3 z	0.48 σ 0.12 σ	θ. 18 ε	0.47 σ 0.12 τ	0.19 ε	0.40 σ 0.09 τ	
11FL (10F)	+	0.39組 0.411	Np	0.46組 	Mp	0.49組 	0.54 5404p	Э́ніі — 0.55Mp —	0.49mi 0.54	Mp	0.48 M	Жир <u>А. ев. с</u>	0.39組 	41Mp
	104	0.50 σ	0.21 z	Q. 57 σ	0.21 r	0.58 o	0.21 r 0.51	0.21 c	Q. 58 σ	0. 21 z	Q. 57 σ	0.21 r	Q. 50 σ	
10FL (9F)	Ļ	0.11で 0.49組 0.46	Ир ————	0.13 E 0.57組 0.53	Mp	0.13で 0.58組 	0.11 0.51	3 元 3 組 - 0.56Mp	0.13 E 0.56組 	Mp	0.13で 0.57組 	3Mp	0.11元 0.49組 	46Mp
	8	0.45 σ	0.90 σ 0.16 τ	0.52 гг	0.80 σ 0.16 τ	0.52 π	0.62 σ 0.16 τ 0.5:	0.820 0.16 τ	0.52 σ	0.80 σ 0.16 τ	0.52 σ	0.90 σ 0.16 τ	0-45 m	
OFI (RF)	4	0.11で 0.45組 0.30	Ma.	0.12 m 0.52組	Ma	0.13 c 0.53組	0.1 0.5	3 元 3 組 	0.13 c 0.53組	Ma	0.12 で 0.52組	500	0.11 r 0.45組	3.0Мг
91 E (01)	ŝ	0.44-	0.93 σ 0.17 ε	0.51-	0.85 σ 0.17 τ	0.50-	0.87 σ 0.17 τ	0.87 0.17 z	0.50-	0.85 σ 0.17 ε	0.51-	0, 93 σ 0, 17 τ	0.44-	1 2004
	404	0.445 0.10 c 0.44組	_	0.510 0.12 z 0.52組		0.520 0.13で 0.52組	0.5 0.1 0.5	207 317 2組	0.520 0.13 m 0.52組	_	0.510 0.12で 0.52組		0.44 <i>0</i> 0.10 r 0.44組	
8FL (/F)		0.42	ηρ <u>0,93 σ</u> 0,19 τ	0. 51	0, 92 σ 0, 16 τ	0.1	0.94 σ 0.18 τ	-0.54Mp 0.94σ 0.18 ε	0.53	Mp 0.92 σ 0.16 τ	0. 5	0, 93 σ 0, 19 τ	0	1200p
	400	0.47 σ 0.11 τ 0.48組		0.57 σ 0.13 τ 0.57組		0.57 σ 0.14 τ 0.56組	0.5 0.14 0.5	7 or 4 c 3 組	0.57 σ 0.14 τ 0.58組		0.57 <i>0</i> 0.13 <i>を</i> 0.57組		0.47 σ 0.11 τ 0.48組	
7FL (6F)		0.41	0.99 σ 0.20 τ	0.49	Μp 0.90 σ 0.20 τ	0.5	51Mp 0.92 σ 0.20 τ	0. 52Mp 0. 92 0 0. 20 z	0.51	Mp 0.90 σ 0.20 τ	0.4	Mp 0, 99 σ 0, 20 τ	0.4	41Mp
	4000	0.47.σ 0.11.ε 0.47組		0.57 σ 0.13 ε 0.57組		0.58 σ 0.14 ε 0.58組	0.5 0.1 0.5	7 σ 4 τ 3 組	0.58 σ 0.14 ε 0.58組		0.57 <i>0</i> 0.13 <i>1</i> 0.57組		0.47 σ 0.11 τ 0.47組	
6FL (5F)	F	0. 431	Νρ 0.92 σ 0.22 τ	0.51	Μp 0, 95 σ 0, 20 τ	0.5	54Mp 0.97 σ 0.21 τ	- 0. 54Mp - 0. 97 0. 21 z	0.54	Mp 0.95 σ 0.20 τ	0.5	Mp 0, 92 σ 0, 22 τ	0.4	43Mp
	4000	0.51 σ 0.11 τ 0.49組		0.61 σ 0.13 τ 0.61組		0.61 σ 0.14 τ 0.61 組	0.6 0.1 0.6	1 σ 4 ε 1 組	0.61 σ 0.14 τ 0.61組		0.61 σ 0.13 τ 0.61 組		0.51 σ 0.11 τ 0.49組	
5FL (4F)	+	0.46	Np 0.96 σ 0.23 π	0.55	Mp 0.99 σ 0.21 π	0.5	56Mp	- 0. 59Mp	0.58	Mp 0.99 σ 0.21 π	0.5	iMp 0.96 σ 0.23 π	0.	46Mp
	40.00	0.55 σ 0.12 τ 0.53¥8		0.65 σ 0.14 τ 0.64¥8		0.64 σ 0.15 τ 0.65¥8	0.64 0.11 0.62	4σ 5 τ 148	0.64 σ 0.15 τ 0.65#8		0.65 σ 0.14 τ 0.64¥8		0.55 σ 0.12 τ 0.53¥8	
4FL (3F)	+	0. 491 0. 491	Np 0.96 σ	0.57	Mp	0. 6	50Mp — 0.66 гг 0.22 г	- 0. 60Мр	0.60	Mp	0. 5	Mp 0.98 σ	0. 0.	49Mc
	4000	0.59 m 0.13 m	0.246	0.68 σ 0.14 ε	0.22 6	0.67 σ 0.15 τ	0. 22 2 0. 61	0.226	0.67 σ 0.15 τ	U. 22 6	0.68 σ 0.14 τ	0.246	0.59 σ 0.13 τ	
3FL (2F)	+	0.57#1 0.441	Vip <u>0.96</u> σ	0.07#1	Mp	0.07#1	54Мр — 0.88 г	- 0. 54Мр — 0. 66 г	0.07#4	Mp	0.07#4	IMp0, 98 σ	0. 57#4	 4400p
	4000	0.62 m 0.12 m	0.24 z	0.68 σ 0.13 τ	0.22 τ	0.67σ 0.14 ε	0, 22 T 0, 61 0, 14	0.22 r 5 r 4 r	0.67 σ 0.14 τ	0.22 τ	0.68 σ 0.13 τ	0.24 τ	0.62 σ 0.12 τ	
2FL (1F)	\vdash	0.59組 0.371	Ир — 0.86 <i>с</i> г	0.67組 	Np	0.67組 	0.61 46Mp	5#1 - 0.47Mp	0.67組 0.46	Mp	0.67組 	WMp	0.59組 	3.7Mp
	950	0.86σ	θ. 21 τ	θ. 85 σ	0.20 τ	0.64σ	0.20 z 0.8	0.20 r	0.84σ	0.20 τ	0.85σ	0.21 τ	0.85 o	
	4	0.11 ट 0.64組		0.13 で 0.65組		0.13 g 0.64組	0, 1 0, 8	3で 3組	0.13 ₹ 0.84¥⊞		0.13 定 0.65細		0.11 z 0.64組	
1FL	-	Ł	0.34M 0.349	4	0.26M 0.269	ı	0. 26M 0. 279	0. 2 6M 0. 2 79	4	0.26M 0.269	2	0. 34M 0. 34Q		4
		L	7200	I	3500	3600	1 7200	7200	ļ	3600 j	3600 [7200		1
		X1		X2	X2-3	,	(3	X4	X5	Х5-6	X	5		X7

図 6.10 短期検定比図(Y2 通り)

6.2.3 保有水平耐力計算結果

表 6.16 に必要保有水平耐力の算定結果を示す。構造特性係数 Ds はいずれかの階の層間変形角 が 1/50 に達した時点における崩壊メカニズムにより算定している。保有水平耐力はいずれかの階 の層間変形角が 1/100 に達した時点とし、その際における応力およびヒンジ発生状況を確認した。 図 6.11 に層せん断力-層間変形角曲線 (Q-δ 図)、図 6.12 に保有水平耐力時の応力図、図 6.13 に 保有水平耐力時のヒンジ図を示す。

以上より、保有水平耐力計算により耐震安全性を確認した。

階	Ds	Fe	Fs	Fes	Qud	Qun	Qu	Qu/Qun	層間
					(kN)	(kN)	(kN)		変形角
12	0.25	1.000	1.000	1.000	18, 117	4,529	7,777	1.71	1/147
11	0.25	1.000	1.000	1.000	25, 825	6,456	11,086	1.71	1/108
10	0.25	1.000	1.000	1.000	32, 431	8,108	13,922	1.71	1/111
9	0.25	1.000	1.000	1.000	38, 364	9, 591	16,469	1.71	1/139
8	0.25	1.000	1.000	1.000	43,600	10,900	18,717	1.71	1/132
7	0.25	1.000	1.000	1.000	48,203	12,051	20, 693	1.71	1/122
6	0.25	1.000	1.000	1.000	52, 204	13,051	22, 410	1.71	1/116
5	0.25	1.000	1.000	1.000	55,626	13,907	23, 879	1.71	1/107
4	0.25	1.000	1.000	1.000	58, 493	14,623	25,110	1.71	1/101
3	0.25	1.000	1.000	1.000	60,813	15,203	26,106	1.71	1/100
2	0.25	1.000	1.000	1.000	62, 594	15,649	26,870	1.71	1/110
1	0.25	1.000	1.000	1.000	63,851	15,963	27,410	1.71	1/212

表 6.16 保有水平耐力比較表

図 6.11 層せん断カー層間変形角曲線(X方向)

					(144) 			(160) -404-			(160) -412-			(157) - 399-1			(158) -406-			(171)	
RFL (12F)		113	-113 (31)	100	504	4 210 (⊬11)	68	606	-202 (#11)	60	600	-1189 (47)	60	592	-/194 (79)	59	579	7173 (8)	61	432	7
	4000	(21)	563C		(197)	824C		(244)	8470		(242)	6670		(238)	6470		(233)	/85.6C		(152)	7070
1051 (115)			-29		(168) 44 6	282		(208)	366		(210)	365		(205)	356		(206)	354		(209)	174
12FL(11F)		331	(302 (-41)	67	500	(436 (/ 81)	56	671	437 (783)	50	669	420 (779)	50	663	(+79)	51	666	421 (783)	37	453	7
	4000	(133)	870C		(274)	14140		(308)	14476		(308)	14580		(305)	14500		(305)	14870		(197)	12690
11EL (10E)			200	_	(199) 55/	496	_	(235)	561		(237) 714	560		(233) 	555		(234)	555	_	(237) 729	336
TIFL(IOF)		222	(-73)	72	593	/533 (-109)	55	678	-637 1/-111)		674	_520 (/-106)		667	/524 (/-107)	50	668	_ <u>522</u> (/-111)	35	394	7
	4104	(165)	11550		(354)	20180		(401)	20600		(399)	20430		(394)	20650		(396)	2129C		(253)	1867C
10EL (0E)			454		(27/1)	656	_		967			961			951		(34 0) T976	956	_		644
1016 (01)		292	(-746 (-147)		870	-9/49 (7218)	74	1043	-9/2 (-/217)	50	1032	-665 (7207)		1017	-696 (7209)		1022	-902 (7227)		560	7
	4000	(151)	13810		(427)	25 95C		(510)	26810		(505)	26370		(498)	26770		(499)	27530		(277)	25860
9EL (BE)		_ [311		(266) 	837		(368) 1355	996			967			974			972		-123	546
312 (01)		459	<u>769</u> (+157)		1005	-1009 (7236)	70	1153	-9,63 (-,236)	51	1145	-9,84 (-,226)	51	1133	-9,67 (-,229)	51	1138	-9,89 (-,240)	4	692	/
	4000	(215)	16010		(491)	31670		(560)	33000		(557)	/32316		(550)	32870		(557)	3383C		(332)	/33200
8EL (7E)		_ L	402		(33 6) 	958		-1244	1085		-1269	1080		-1234	1066		-1230	1090		-1405	635
012 (11)		545	+947 (+204)		1124	-1,687 (259)	64	1244	-1986 (-262)	51	1238	-1949 (-252)	50	1225	-1956 (-252)	56	1250	-1,190 (-284)	-4	769	
	4000	(258)	17770		(553)	3768C		(615)	39236		(611)	38290		(605)	3905C		(613)	3996C		(367)	40990
7FL (6F)		[465		-1107	1085	_	-13/61	1214		-1,400	1207		-1265	1195		-1,378	1203		-1502	698
	_	567	710/1 (7237)	T26	1252	-1230 (=297)	68	1361	1-1215 (51	1373	-12/19 (~288)	51	1362	-1793 (= 2 92)	52	1369	-1794 (= 2 09)	-11	805	/
	4960	(286)	19250		(617)	43690		(676)	45530		(672)	∕4431€		(666)	4524C		(675)	45300		(393),	49050
6FL (5F)			557	-	-1273	1216	-	-1456	1321		-1479	1315	-	-1448	1303	-5	-1444	1328		-1657	768
		003	(#284)	130	1991	1-2477 1-2477	- 02	1431	(-)20)	J2	1420	(=)41)		1414	-1,009 (=)41)	3/	1400	(-350)	-10	003	
	40K	(334)	20300		(668) (440)	50020		(705) 6484)	5186C		(703) 6785)	25036C		(697) (492)	51500		(718) (780)	52440		(432)	/ 5755C
5FL (4F)	+		646	-12	-1866	1319		-1/517	1366	-5	-1/537	1384	-11	-1810	1372	-5	-1503	1415	-18	-17/8	636
		721	(7317)	100	1417	(-233)	- 19	1402	(-238)	- J2	14/7	(-328)	10 1	1407	(-228)	- 37	1002	(-342)	-10	301	/
	400	(357)	21080		(710) (471)	56600		(744) 	58260		(741)	⁷⁵⁶⁴⁸⁰		(737)	′5784C		(751)	25859C		(445)	66300
4FL (3F)	+		706	-120	-j463 1473	1423	- 61	-1600	1492	-52	-1612	1486 -1493	- 52	-1589	1476 -1471	-54	-1593	1500 -1444	-25	-1769	877
	¢	(1004)	(+33.9)	- 140	(1470	(-355)		(242)	(-356)		1020	(-350)		1000	(-351)	54	(220)	(-362)			/
	Ą	(361)	21666		(140) 4487)	r 63246		(167)	r 64766		1051	02000		10821	64236		1283)	r 64946		(456)	75196
3FL (2F)	+	- /	774		<u>-1522</u> 1455	1487	-57	<u>-11597</u> 1486	1533	- 52	-1607	1529 -1485		- <u>1590</u> 1477	1523		-1589 1500	1541 -1483	-22	-17,84 865	919
	8	(415)	(4355)		(767)	(-353)		(790)	(-355)		(770)	(-350)		(275)	(-351)		(707)	(-384)		(477)	04150
	40	(415)	66 140		_1444)	70130		19215	71320		-1429)	00070		1425	10100		425	71330		(477)	04150
2FL (1F)	+	- 414	926		<u>-7379</u> 977	1611	54	-7369 966	1633		-71397 970	1629	52	-7387 965	1625 -/203		-/1382 991	1648	-14	-1572 530	1042
		/	(-31-2)		/	122997		/	122997			[2:2:9:4]"			(£2 9 3)"		/	123275		/	ĺ
	495((467)	23126		(724)	77240		(7/4)	77960		(7/6)	75150		(7/4)	7727C		(726)	7779C		(543)	9264C
			1995		-1858	2603		(579)	2567	1	-1636	2574		-1614)	2567		-1540	2601	/	(702)	2156
TFL	•	2	-1995 (-261)	605	2	-746 (-70)		. 2	5-978 (-109)	208	4	5-938 (~104)		4	-922 (-88)	-226		4-1062 (-193)	11	2	2
				7200		3600	1	3600		7200			7200		3600	1	3600		7200		l
		Y	1		1	2	X2-3	Y	3		Y	4		Y	5	X5-6	,	6		Y	7
					,	-	/ac 0				72			7			,			,	

図 6.12 保有水平耐力時応力図(Y2 通り)

図 6.13 保有水平耐力時ヒンジ図(Y2 通り)

6.3 疲労性能評価式を用いたエネルギー法に基づく設計

本節では、前節までの保有水平耐力計算により設計された建築物について、本報告で提案した 鉄骨造梁端部の設計用疲労性能評価式を用いたエネルギー法の計算方法に基づき、極稀地震等の 地震入力に対する耐震安全性を確認するための計算を行う。

6.3.1 梁端接合部の仕口の違いによる比較検討

(1) 梁端部破断限界塑性率の算定

以下に示す梁端部の設計用疲労性能評価式(6.1)を用いて、梁のスパン長、梁端接合部仕様、梁 部材の強度および地震動特性(①告示極稀地震(標準波)、②直下地震(断層近傍の地震動)、③ 長継続時間地震(長継続時間地震動))に応じて、梁端部の破断限界塑性率 μbi を算定する。

$$\mu_{bi} = k_2 \cdot C \left({}_b N_e / k_1 \right)^{-\beta} \tag{6.1}$$

・bNeは梁端部の等価な繰返し回数で、(6.2)式で計算される。

 $_{h}N_{e} = n \cdot N_{e}$

(6.2)

nは $_{bN_{e}}$ と $_{sN_{e}}$ (層の等価な繰返し回数)の比で、スパン長により以下の値となる。

n=1.0 (梁スパン10~20m 程度の長スパン架構)

n=1.8 (梁スパン4~10m 程度の標準スパン架構)

n=2.5 (梁スパン 4m 以下程度の短スパン架構)

本検討では、X方向のスパンが7.2mのため、n=1.8とする。

・*sNe* は層の等価な繰返し回数であり、現行エネルギー法告示における鉄骨造では 1.0 を基本とし、直下地震では 0.75 とされている。また、地震動特性により、各地震動の *sNe* は以下のように計算される。

① 告示極稀	地震(標準波)	$: {}_{s}N_{e} = 1.00$
--------	---------	------------------------

- ② 直下地震(断層近傍の地震動) :_sN_e=0.75
- ③ 長継続時間地震(長継続時間地震動) :_sN_e=2.30(告示極稀地震の2.30倍)
- ・k2は使用する梁部材の強度(F値)が490N/mm²級でない場合k2=325/(使用鋼材のF値)で計算。
 (F=385 N/mm²級も適用可能)
- ・Cは梁端接合部の仕様により決まる定数

スカラップ 4.0、ノンスカラップ 5.6、高性能仕口 8.0

- ・k1は歪集中を表す補正係数(ここでは1.0とする)
- ・βは評価式の勾配で 1/3

梁スパン長、地震動特性(①告示極稀地震(標準波)、②直下地震(断層近傍の地震動)、③長継 続時間地震(長継続時間地震動))、梁端部仕様、鋼材強度に応じて、疲労性能評価式から算定し た本建築物の梁端部破断限界塑性率μ_{bi}を表 6.17 に示す。

表 6.17 梁の破断限界塑性率

地震タイプ	n	k1	k2	sNe	bNe	μ bi				
	スパン		鉄骨材質			スカラップ	ノンスカラップ	高性能仕口		
	7.2m		SN490B			(C = 4.0)	(C = 5.6)	(C = 8.0)		
告示極稀地震	1.80	1.00	1.00	1.00	1.80	3.29	4.60	6.58		
直下地震	1.80	1.00	1.00	0.75	1.35	3.62	5.07	7.24		
長継続時間地震	1.80	1.00	1.00	2.30	4.14	2.49	3.49	4.98		

(2)1階柱脚の限界塑性率の算定

第1層の保有エネルギーについては、図 6.14 に示す通り、2 階床梁の破断限界塑性率と1 階柱 脚(鋼管柱の脚部)の限界塑性率のうちの小さい方で限界層間変形が決定される。

図 6.14 柱脚で決まる第1層の保有エネルギー M₀

柱脚の限界塑性率は以下に示す柱の疲労限界性能評価式(6.3)を用いて、柱梁耐力比、幅厚比、 柱部材の強度および地震動特性(①告示極稀地震(標準波)、②直下地震(断層近傍の地震動)、 ③長継続時間地震(長継続時間地震動))に応じて、1階柱脚の限界塑性率μ_{ci}を算定する。

$$\mu_{ci} = \frac{325}{\sigma_v} \cdot C \cdot {}_c N_e^{-\beta} \tag{6.3}$$

cNeは柱脚部の等価な繰返し回数で、式(6.4)で計算される。

$${}_{c}N_{e} = n_{c} \cdot {}_{s}N_{e} \tag{6.4}$$

 n_c は $_cN_e$ と $_sN_e$ (柱脚の等価な繰返し回数)の比で、柱梁耐力比により表 6.18の値となる。

外柱 内柱 1.0以上 1.0以上 1.0未満 2.0以上 1.0未満 柱梁耐力比 1.6以上 2.0未満 1.6未満 1.5 1.2 0.6 1.5 1.0 0.3 nc

表 6.18 柱脚の等価な繰り返し回数比

*sNe*は層の等価な繰返し回数であり、現行エネルギー法告示における鉄骨造では 1.0 を基本とし、 直下地震では 0.75 とされている。また、地震動特性により、各地震動の *sNe* は以下のように計算 される。

①告示極稀地震(標準	些 波)	$: {}_{s}N_{e} = 1.00$	
②直下地震(断層近傍	等の地震動)	: $_{s}N_{e}=0.75$	
③長継続時間地震	(長継続時間地震動)	$: {}_{s}N_{e}=2.30$	(告示極稀地震の 2.30 倍)

C、βは一般化幅厚比により決まる係数(表 6.19 による)

一般化幅厚比	係数C	係数β
$(D/t) \times \sqrt{\sigma_y/E} \le 0.6$	13.00	0.333
$0.6 < (D/t) \times \sqrt{\sigma_y/E} \le 0.8$	6.16	0.240
$0.8 < (D/t) \times \sqrt{\sigma_y/E} \le 1.0$	3.51	0.170
$1.0 < (D/t) \times \sqrt{\sigma_y/E} \le 1.2$	2.35	0.120
$1.2 < (D/t) \times \sqrt{\sigma_y/E} \le 1.4$	2.00	0.100

表 6.19 疲労性能評価式の係数

上記、計算方法により算定した柱脚の限界塑性率を表 6.20 に示す。

符号		C1	C2	C3	C4
外柱/内核	È	内柱	外柱	内柱	外柱
柱せい	D	600	600	600	600
柱板厚	t	36	28	40	40
幅厚比	D/t	16.67	21.43	15.00	15.00
柱 б у		325	325	325	325
一般化幅	享 比	0.66	0.85	0.60	0.60
係数C		6.16	3.51	13.00	13.00
係数β		0.24	0.17	0.33	0.33
柱梁耐力b	七	1.83	3.23	1.93	3.71
nc		0.30	0.60	0.30	0.60
cNe	告示極稀地震 (sNe=1.00)	0.30	0.60	0.30	0.60
$=$ nc \times sNe	直下地震 (sNe=0.75)	0.23	0.45	0.23	0.45
	長継続時間地震(sNe=2.30)	0.69	1.38	0.69	1.38
μci	告示極稀地震	8.22	3.83	19.41	15.41
	直下地震	8.81	4.02	21.36	16.96
	長継続時間地震	6.73	3.32	14.71	11.68

表 6.20 柱脚の限界塑性率 µ ci

(3) 復元力特性の設定

静的増分解析において、骨組各層で梁が最初に破断限界塑性率に達した時点(第1層において は2階床梁の破断限界塑性率と1階柱脚の限界塑性率のうちの先に限界に到達した時点)が各層 の梁破断限界層間変形 δ_{si} であり、図 6.15の塑性エネルギーの面積(W_{pi})の($4 \times_{s} N_{e}$)倍が、当該 層の梁破断までの保有エネルギーとして式(6.5)で計算される。

各層の保有エネルギー = $4 \times_s N_e \times W_{pi}$

(6.5)

図 6.15 層の限界変形と保有水平耐力

図 6.16~図 6.18 に告示極稀地震、図 6.19~図 6.21 に直下地震、図 6.22~図 6.24 に長継続地震 の復元力特性を示す。図中には、各層における降伏変形 δ_{fui} 、梁端部が破断限界塑性率に到達して 耐力劣化を開始する梁破断限界層間変形 δ_{fsi} 、1 階においては柱脚が限界塑性率に到達した際の限 界層間変形 δ_{fci} も併せて示している。なお、何れの地震動においても、梁端部が高性能継手(C= 8.0)のケースで、梁破断限界層間変形よりも柱脚の限界層間変形が小さい結果となった。

0.000 0.005 0.010 0.015 0.020 0.025 0.030

6F

δ fu ⊨ 1/110

δ fs ⊨ 1/48

30,000

25,000

20,000

15,000

10,000

5,000

0

7F

5F

図 6.16 告示極稀地震 (スカラップ、C=4.0)

5F

図 6.17 告示極稀地震 (ノンスカラップ、C=5.6)

0.00 0.01 0.02 0.03 0.04 0.05 0.06

6F

δ fu ⊨ 1/107

δ fs ⊨ 1/25

30,000

25,000

20,000

15,000

10,000

5,000

0

12F

30,000

25,000

20,000

15,000

10,000

5,000

0

8F

δ fu ⊨ 1/103

δ fs ⊨ 1/25

0.00 0.01 0.02 0.03 0.04 0.05 0.06

図 6.18 告示極稀地震(高性能仕口、C=8.0)

30,000

25,000

20,000

15,000

10,000

5,000

0

4F

図 6.19 直下地震 (スカラップ、C=4.0)

30,000

25,000

20,000

15,000

10,000

5,000

0

7F

図 6.20 直下地震 (ノンスカラップ、C=5.6)

図 6.21 直下地震(高性能仕口、C=8.0)

30,000

25,000

20,000

15,000

10,000

5,000

0

図 6.22 長継続時間地震動 (スカラップ、C=4.0)

6F

30,000

25,000

20,000

15,000

10,000

5,000

0

0.000 0.005 0.010 0.015 0.020 0.025 0.030

5F

図 6.23 長継続時間地震動 (ノンスカラップ、C=5.6)

δ fu ⊨ 1/108

δ fs ⊨ 1/33

30,000

25,000

20,000

15,000

10,000

5,000

0

12F

7F

0.00 0.01 0.02 0.03 0.04 0.05 0.06

図 6.24 長継続時間地震動(高性能仕口、C=8.0)

(4) 主架構の保有エネルギー吸収量と必要エネルギー吸収量の比較

建築物に入力される塑性エネルギー E_s 、架構が弾性範囲で吸収するエネルギー W_e は、長継続時間地震の場合のエネルギーの増加倍率q、地震動特性に応じた層の等価な繰返し回数 $_{s}N_e$ を用いて (6.6)式で計算される。

$$E_{s} = \frac{1}{2} q M V^{2} - W_{e}$$

$$W_{e} = \sum \frac{1}{2} Q_{efi} \delta_{i}$$
(6.6)

ここで、*q*は長継続時間地震のエネルギーの増加倍率で 3.0、*sNe* は層の等価な繰返し回数で、① 告示極稀地震(標準波)1.0、②直下地震(断層近傍の地震動)0.75、③長継続時間地震(長継続時 間地震動)2.3 である。

各層に分配された必要エネルギーEsiに対して、主架構の必要エネルギーは(6.7)式で計算される。

$$E_{sfi} = E_{si} \times \frac{Q_{fiii}}{Q_{iii}}$$
(6.7)

建物の主架構の復元力特性を表 6.21 に示す。代表として、告示極稀地震(Vs=1.65m/s、n1= 2.0、r=q=1.0)、スカラップ(C=4.0)における建物が吸収できるエネルギー量を表 6.22 に、建物の各階に作用する塑性歪みエネルギー量を表 6.23 に示す。

表 6.21 復元力特性

			主	架構の復元力特	ダンパー部分の)復元力特性	
階	Hi	Wi	δíui	Qíui	δısi	δdui	Qdui
i	(m)	(kN)	(cm)	(kN)	(cm)	(cm)	(kN)
12	4.000	10686	3.207	9208	10.793	0.000	0
11	4.000	7570	4.252	12846	10.681	0.000	0
10	4.000	7575	4.202	15985	9.585	0.000	0
9	4.000	7778	3.290	18790	8.301	0.000	0
8	4.000	7820	3.404	21060	8.631	0.000	0
7	4.000	7859	3.588	22835	8.551	0.000	0
6	4.000	7883	3.647	24230	8.265	0.000	0
5	4.000	7901	3.761	25359	8.318	0.000	0
4	4.000	7931	3.822	26322	7.978	0.000	0
3	4.000	7947	3.851	27358	7.821	0.000	0
2	4.000	7969	3.667	28563	7.285	0.000	0
1	4.500	8055	2.424	29860	6.454	0.000	0

Hi :各階の階高

Wi : 各階の重量

δfui: 各階の主架構の保有水平耐力時の変形

Qfui :各階の主架構の保有水平耐力

δ_isi : 各階の主架構の耐力劣化開始点の変形

δdui : 各階のダンパー部分の保有水平耐力時の変形

Qdui : 各階のダンパー部分の保有水平耐力

表 6.22 建築物が吸収できるエネルギー量

階	δι	Wfi	Wdei	Wdpi	Wei	Qi	
i	(cm)	(kNm)	(kNm)	(kNm)	(kNm)	(kN)	
12	2.83	115.17	0.00	0.00	115.17	8149	
11	3.84	222.41	0.00	0.00	222.41	11616	
10	3.83	278.57	0.00	0.00	278.57	14588	
9	3.01	259.61	0.00	0.00	259.61	17257	
8	3.16	309.58	0.00	0.00	309.58	19613	
7	3.40	367.88	0.00	0.00	367.88	21684	
6	3.53	413.32	0.00	0.00	413.32	23484	
5	3.70	462.41	0.00	0.00	462.41	25024	
4	3.81	500.64	0.00	0.00	500.64	26314	
3	3.84	524.55	0.00	0.00	524.55	27358	<最弱層
2	3.61	506.88	0.00	0.00	506.88	28160	
1	3.52	690.59	0.00	0.00	690.59	28726]
					***************************************	***************************************	1
				We (kNm)	4651.61		-

δi:最弱層が保有水平耐力に達する時の各階の変位

Wfi:各階の主架構に弾性ひずみエネルギーとして吸収されるエネルギー量

Wdei : 各階のダンパー部分に弾性ひずみエネルギーとして吸収されるエネルギー量

Wdpi : 各階のダンパー部分に塑性ひずみエネルギーとして吸収されるエネルギー量

Wei:最弱層が保有水平耐力に達する時の各階が吸収することができるエネルギー量

We:最弱層が保有水平耐力に達する時の建築物が吸収することができるエネルギー量

表 6.23 建築物の各階に作用する塑性歪みエネルギー量

階	mi	$\Sigma m_i/M$	Ai	Qui	Si
i	(t)			(kN)	
12	1090	0.110	2.663	9208	0.369
11	772	0.188	2.213	12846	0.708
10	772	0.266	1.957	15985	0.880
9	793	0.347	1.775	18790	0.816
8	797	0.427	1.632	21060	0.968
7	801	0.508	1.512	22835	1.144
6	804	0.590	1.408	24230	1.278
5	806	0.671	1.315	25359	1.423
4	809	0.753	1.229	26322	1.531
3	810	0.835	1.149	27358	1.595
2	813	0.917	1.073	28563	1.531
1	821	1.000	1.000	29860	1.000

mi :各階の質量

Σmi : 各階が支える質量

Ai : 各階のAi分布

Qui :各階の保有水平耐力

si:1階の必要エネルギー吸収量に対する各階の必要エネルギー吸収量の比を表す基準値

階	αi	pi	Rei	pti	si(pipti) ⁻ⁿ	Esi
i						(kNm)
12	0.862	1.051	0.00	1.000	0.303	189.29
11	0.704	1.033	0.00	1.000	0.622	388.65
10	0.619	1.027	0.00	1.000	0.792	495.30
9	0.559	1.023	0.00	1.000	0.745	465.34
8	0.508	1.012	0.00	1.000	0.923	577.22
7	0.463	0.995	0.00	1.000	1.168	729.97
6	0.424	0.977	0.00	1.000	1.402	876.00
5	0.390	0.963	0.00	1.000	1.657	1035.96
4	0.361	0.953	0.00	1.000	1.858	1161.48
3	0.338	0.955	0.00	1.000	1.914	1196.21
2	0.321	0.972	0.00	1.000	1.713	1070.74
1	0.308	1.000	0.00	1.000	1.000	625.04

αi: 各階の保有水平層せん断力係数

pi:1階の保有水平層せん断力係数に対する各階の保有水平層せん断力係数の比とAiの数値との比

Rei : 各階の偏心率

pri::各階の必要エネルギー吸収量に係る当該階の偏心による割増に等価な保有水平層せん断力係数の低減係数 Esi:各階の必要エネルギー吸収量

各種地震動(告示極稀地震、直下地震、長継続時間地震)に対し、地震の大きさ(1.0 倍、1.5 倍、2.0 倍)、梁端部形式(スカラップ、ノンスカラップ、高性能仕口)の各組合せにおける、保 有エネルギー吸収量と必要エネルギー吸収量のグラフを図 6.25~図 6.27 に示す。

図 6.25 保有エネルギー吸収量と必要エネルギー吸収量の比較(告示極稀地震)

図 6.26 保有エネルギー吸収量と必要エネルギー吸収量の比較(直下地震)

図 6.27 保有エネルギー吸収量と必要エネルギー吸収量の比較(長継続時間地震)

(5) 主架構の応答変形角の比較

エネルギー法で計算される各層のフレームの必要エネルギー*E*_{sfi}から、当該層の応答変形を(6.8) 式~(6.11)式により算出する。

累積塑性変形倍率
$$n_{fi} = \frac{E_{sfi}}{Q_{fui} \times \delta_{fui}}$$
 (6.8)

最大塑性率
$$u_{fi} = \frac{n_{fi}}{4 \times N_e} + 1$$
(6.9)

最大層間変形 $\delta_{\max} = \delta_{fui} \times \mu_{fi}$ (6.10)

最大層間変形角
$$R_{\text{max}} = \delta_{\text{max}} / h_i$$
 (6.11)

各種地震動に対し、地震の大きさ(1.0 倍、1.5 倍、2.0 倍)、梁端部形式(スカラップ、ノンス カラップ、高性能仕口)の各組合せにおける、以上より計算した主架構の応答変形角を図 6.28 に 示す。グラフ内の点線は、骨格曲線の第1折点(*δ*_{ui})、第2折点(*δ*_{si})を示している。

なお、上式による各層の累積塑性変形倍率は、主架構が保有水平耐力を維持することを前提と して求めている。そのため、本設計例において設定した復元力特性の耐力劣化領域の影響は考慮 されておらず、層間変形が梁破断限界層間変形 δ_{si}を超える場合は、層の保有エネルギーを過大評 価していることとなる。よって、層間変形が梁破断限界層間変形 δ_{si}を超える場合の応答変形は参 考値であることに留意されたい。

図 6.28 主架構の応答変形角

6.3.2 鋼製ダンパーで補強した架構の比較検討

(1) 鋼製ダンパーで補強した架構の概要

図 6.29 の梁伏図、図 6.30 の軸組図に示した通り、6.2 で設計した架構のX方向に対し、保有水 平耐力の 10%および 25%に相当する座屈拘束ブレースを付加した架構の検討を実施する。座屈 拘束ブレースは制振タイプ(LYP225)とする。

座屈拘束ブレースの各階せん断力の負担割合を 10%とした検討をケース 1、25%とした検討を ケース 2 とし、表 6.24 に諸元を示す。

階	フレーム	座屈拘束ブレース							
			ケー	-ス1			ケー	-ス2	
	Qfui	耐力	Qdui	Qdui/ Σ Qui	ΣQui	耐力	Qdui	Qdui/ Σ Qui	ΣQui
	(kN)	(kN)	(kN)		(kN)	(kN)	(kN)		(kN)
12	7, 777	500	874	10%	8,651	1,500	2,622	25%	11, 274
11	11,086	750	1, 311	11%	12, 397	2,000	3, 497	24%	15,894
10	13,922	1,000	1,748	11%	15,670	2,500	4,371	24%	20,041
9	16,469	1,250	2,185	12%	18,654	3,000	5,245	24%	23, 899
8	18,717	1,250	2,185	10%	20,902	3, 500	6,119	25%	27,021
7	20, 693	1,500	2,622	11%	23, 315	4,000	6,993	25%	30, 308
6	22, 410	1,500	2,622	10%	25,032	4,000	6,993	24%	32,026
5	23, 879	1,500	2,622	10%	26, 502	4,000	6,993	23%	33, 495
4	25,110	1,750	3,060	11%	28,170	4,500	7,867	24%	36,037
3	26,106	1,750	3,060	10%	29,165	4,500	7,867	23%	37,032
2	26,870	1,750	3,060	10%	29,930	4,500	7,867	23%	37, 797
1	27.410	1.750	2,968	10%	30.378	4,500	7.632	22%	38,010

表 6.24 座屈拘束ブレース負担割合

 ケース1(座屈拘束ブレース耐力付加率10%)の保有水平耐力 表 6.25に保有水平耐力比較表、図 6.31に層せん断力-層間変形角曲線を示す。 QBu ブレース10%/QBu ォーブンフレーム=30,526/27,410=1.11倍

階	Ds	Fe	Fs	Fes	Qud	Qun	Qu	Qu/Qun	層間
					(kN)	(kN)	(kN)		変形角
12	0.25	1.000	1.000	1.000	18, 152	4, 538	8,646	1.90	1/147
11	0.25	1.000	1.000	1.000	25, 887	6,472	12, 331	1.90	1/108
10	0.25	1.000	1.000	1.000	32, 520	8,130	15, 490	1.90	1/112
9	0.25	1.000	1.000	1.000	38, 480	9,620	18, 329	1.90	1/140
8	0.25	1.000	1.000	1.000	43, 739	10,935	20,834	1.90	1/131
7	0.25	1.000	1.000	1.000	48, 363	12,091	23,037	1.90	1/121
6	0.25	1.000	1.000	1.000	52, 381	13,095	24,951	1.90	1/114
5	0.25	1.000	1.000	1.000	55,819	13,955	26, 588	1.90	1/105
4	0.25	1.000	1.000	1.000	58,701	14,675	27,961	1.90	1/101
3	0.25	1.000	1.000	1.000	61,033	15, 258	29,072	1.90	1/100
2	0.25	1.000	1.000	1.000	62,823	15,706	29, 925	1.90	1/110
1	0.25	1.000	1.000	1.000	64,087	16,022	30, 526	1.90	1/208

表 6.25 保有水平耐力比較表

図 6.31 層せん断カー層間変形角曲線(X 方向)

 ケース2(座屈拘束ブレース耐力付加率25%)の結果 表 6.26に保有水平耐力比較表、図 6.32に層せん断力-層間変形角曲線を示す。 QBu ブレース25%/QBu ォーブンフレーム=34,847/27,410=1.27倍

1.000

1.000

1.000

1.000

1.000

5

4

3

2

1

0.25

0.25

0.25

0.25

0.25

1.000

1.000

1.000

1.000

1.000

表 6.26 保有水平耐力比較表										
階	Ds	Fe	Fs	Fes	Qud	Qun	Qu	Qu/Qun		
					(kN)	(kN)	(kN)			
12	0.25	1.000	1.000	1.000	18,179	4,545	9,849	2.16		
11	0.25	1.000	1.000	1.000	25,941	6,485	14,054	2.16		
10	0.25	1.000	1.000	1.000	32,600	8,150	17,661	2.16		
9	0.25	1.000	1.000	1.000	38, 585	9,646	20,904	2.16		
8	0.25	1.000	1.000	1.000	43,871	10,968	23, 768	2.16		
7	0.25	1.000	1.000	1.000	48, 517	12, 129	26,285	2.16		
6	0.25	1.000	1.000	1.000	52, 556	13, 139	28,473	2.16		

56,011

58,908

61,252

63,053

64,322

14,003

14,727

15,313

15,763

16,081

30,345

31,914

33, 184

34,160

34,847

2.16

2.16

2.16 2.16

2.16

1.000

1.000

1.000

1.000

1.000

層間 変形角 1/145 1/108 1/111 1/137 1/131 1/121 1/112

1/103

1/100

1/100

1/109

1/200

図 6.32 層せん断カー層間変形角曲線(X方向)

(2) 復元力特性の設定

梁端接合部がスカラップで告示極稀地震における復元力特性を、ダンパーのせん断力負担割合 10%程度のケースを図 6.33 に、ダンパーのせん断力負担割合 25%程度のケースを図 6.34 に示す。

図 6.33 告示極稀地震 (スカラップ、ダンパー量 10%)

図 6.34 告示極稀地震 (スカラップ、ダンパー量 25%)

(3) 主架構の保有エネルギー吸収量と必要エネルギー吸収量の比較

1

建築物に入力される塑性エネルギー E_s 、架構が弾性範囲で吸収するエネルギー W_e は、長継続時間地震の場合のエネルギーの増加倍率q、地震動特性に応じた層の等価な繰返し回数 $_{s}N_e$ を用いて (6.12)式で計算される。

$$E_{s} = \frac{1}{2}qMV^{2} - W_{e}$$

$$W_{e} = \sum \left\{ \frac{1}{2} Q_{efi} \delta_{i} + \frac{1}{2} Q_{dui} \delta_{dui} + 2(\delta_{i} - \delta_{dui}) Q_{dui} \cdot n_{i} \cdot {}_{s} N_{e} \right\}$$
(6.12)

ここで、q は長継続時間地震のエネルギーの増加倍率で 3.0、_sN_e は層の等価な繰返し回数で、① 告示極稀地震(標準波) 1.0、②直下地震(断層近傍の地震動) 0.75、③長継続時間地震(長継続時 間地震動) 2.3 である。

各層に分配された必要エネルギー E_{si} に対して、主架構およびダンパー部分の必要エネルギーは (6.13)式で計算される。

$$E_{sfi} = E_{si} \times \frac{Q_{fui}}{Q_{ui}}$$

$$E_{sdi} = E_{si} \times \frac{Q_{dui}}{Q_{ui}} + 2(\delta_i - \delta_{dui})Q_{dui} \cdot n_i \cdot N_e$$
(6.13)

梁端接合部の仕口がスカラップのケースにおいて、ダンパー量の違いによる保有エネルギー吸収量と必要エネルギー吸収量の比較を、図 6.35~図 6.38 に示す。

図 6.35 保有エネルギー吸収量と必要エネルギー吸収量の比較(告示極稀地震)

図 6.36 保有エネルギー吸収量と必要エネルギー吸収量の比較(直下地震)

図 6.37 保有エネルギー吸収量と必要エネルギー吸収量の比較(長継続時間地震)

図 6.38 保有エネルギー吸収量と必要エネルギー吸収量の比較(極大地震)

(4) 主架構の応答変形角の比較

エネルギー法で計算される各層のフレームの必要エネルギー*E*_{sfi}から算出した応答変形を図 6.39 に示す。

図 6.39 主架構の応答変形角

6.4 まとめ

地上12階建て鉄骨造の事務所ビルを用いて、極大地震に対する鋼構造建築物のエネルギー法に よる設計例を示した。保有水平耐力計算により設計された建築物について、鉄骨造梁端部の設計 用疲労性能評価式を用いたエネルギー法の計算方法に基づき、極稀地震等の地震入力に対する耐 震安全性を確認するための計算を行った。以下に、そのまとめを示す。

6.3.1 (梁端接合部の仕口の違いによる比較検討)および 6.3.2 (鋼製ダンパーで補強した架構の 比較検討)において、各ケースの応答評価一覧を表 6.27 に示す。

表内の記号および数値は以下の通り。

ND: ダンパーなし、D10: ダンパー耐力付加率 10%、D25: ダンパー耐力付加率 25% ©: 主架構降伏変形以内 ($\delta_{fu} < 1.0$)、 \circ : 梁破断限界以下、×: 倒壊限界以上 数値は、保有エネルギー吸収量/必要エネルギー吸収量の最大値を示す。

地震動	ケース	ND	ND	ND	D10	D25
タイプ	倍率	スカラップ	ノンスカラップ	高性能	スカラップ	スカラップ
	1.00	0.29	0 0.17	○ 0.10	0 0.11	0.01
告示	1.50	0.81	0.48	0.28	0.62	0.49
極稀	1.75	× 1.15	0.68	0 0.41	0.96	0.80
	2.00		0.91	0.55	× 1.34	× 1.15
	1.00	0.20	0.12	0.07	0.05	© 0.00
直下	1.50	0.65	0.38	0.23	0.47	0.37
	1.75	0.93	0.55	0.34	0.75	0.63
	2.00	× 1.27	0.75	0.46	× 1.07	0.93
	1.00	0.65	0.33	0.19	0.35	0.21
長継続	1.25	× 1.07	0.54	0.32	0.77	0.61
	1.50		0 0.80	0 0.47	× 1.28	× 1.10

表 6.27 各地震動に対する応答評価一覧

保有水平耐力が確保されている 12 階建ての事務所ビルにおいて、梁端接合部の仕口をスカラッ プとした場合、疲労性能評価式を用いたエネルギー法に基づく設計によると、告示極稀地震の 1.5 倍、直下地震の 1.75 倍、長継続地震の 1.0 倍に対して倒壊に至らない結果となった。仕口を ノンスカラップや高性能仕口とすると、告示極稀地震・直下地震の 2.0 倍超、長継続地震の 1.5 倍超に対しても倒壊に至らない結果となった。

一方で、梁端接合部の仕口がスカラップの架構を鋼製ダンパーで補強した場合、ダンパー耐力 付加率が保有水平耐力の10%の場合は、告示極稀地震の1.75倍、直下地震の1.75倍、長継続地 震の1.25倍に対して倒壊に至らない結果となった。ダンパー耐力付加率が25%の場合は、直下 地震の1.0倍に対しては、架構の塑性化は生じなかった。告示極稀地震の1.75倍、直下地震の 2.0倍、長継続地震の1.25倍に対して倒壊に至らない結果となった。

以上の検討から、仕口をスカラップからノンスカラップにするケースの方が、仕口はスカラッ プのまま、保有水平耐力の25%の鋼製ダンパーで補強したケースよりも、倒壊時の地震動レベ ルが向上する結果となった。