動作取得及び表示方法の検討

 \sim デジタル版人体動作テンプレートドローイングシステムの開発 \sim 布田健 *1 、垂井健吾 *2

Study on the capturing of human motion and the indication method. Development of the digital template drawing system for the human body and the motion. Nunota Ken, Tarui Kengo

1. はじめに

筆者らは、これまでに「人体寸法や身体機能から見た動的建 築設計資料集成の開発」という一連の研究^{参1)2)}の中で、住宅や 建築内における人の動作を、デジタルテンプレートとして描き 出し CAD データとして使用出来るシステムについて検討して きた。この中では、動作データベース(以下、DB)を構築する 上での課題の整理、空間設計時のデータ利用の容易性の検討等 を行った。また、これら結果を踏まえ、動作 DB を構築するた めの「デジ典 Server」及び建築設計時に使用する「デジ典 Viewer」から構成される「デジタル版人体動作テンプレートド ローイングシステム(通称:デ・じ・典)」を開発し、「デジ典 Viewer」は、フリーウエアとして一般に公開した。これら環境 が整備されたことで、動作データの充実や本システムの活用が、 期待出来るレベルにまで到達した。一方、現状ではデータ取得 方法(主にモーションキャプチャによる)やデータフォーマッ トが定まっていない事等が理由で、個々の範囲でのデータ活用 にとどまっている。また、実際の DB 構築を行う事を想定した 場合、産官学それぞれの主体が必要に応じてデータを作成し、 それが共有のものとして一元的に扱われていくことが望ましい と考えている。そこで本研究では、住宅や建築内での人の動作 データの共有化を目的に、その取得方法の概要をメモとして整 理した。また、システムの開発時点からある程度時間が経ち、 コンピュータ OS や動作データのフォーマットもバージョンア ップされてきているため、それらの対応状況についても併せて 述べることとした。

2. モーションキャプチャを用いた動作取得の検討

モーションキャプチャシステムの概要

「モーションキャプチャシステム(motion capture system)」とは、物体の動きをデジタル的に記録する技術であり、コンピュータアニメーションやゲームのキャラクターなどの、主に人の動きを表現する技術である。また、スポーツ及び福祉介護の分野で用いることもある。動作の取得作業をキャプチャと呼ぶが、その方式には光学式、機械式、磁気式、ビデオ式などがあり、表1に示す様に、それぞれ特徴がある。(独) 建築研究所では、複数のカメラを用い人体に取り付けたマーカーの軌跡を追

うタイプの光学式を採用したが、その理由としてはマーカーが 小さく動作への影響が小さいことや、複数人のデータが取得で きるからである。その一方で、カメラ設置の関係で比較的狭い 範囲でしか使用出来ない、マーカーが隠れる場合はソフトウェ ア上で補正する必要があるなどの制約もある。表 2 に、建築研 究所に設置した装置のスペックについて、その概要を示す。

・マーカーセットについて

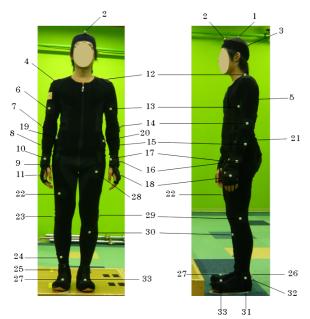

光学式では反射フィルム (例:3M™スコッチライト™ 反射ト ランスファーフィルム)を球状の発砲スチロールに貼り付けた ものを反射マーカーとして用いる。マーカーのサイズは、通常 $10\phi \sim 30\phi$ (mm) 程度のものが多く用いられるが、大きいと 動作に支障が出る、小さいと光が反射しない等の問題があるた め、動作対象により適宜判断する必要がある。これらのマーカ ーを人体に取り付け、その位置と名称を定義づけたものをマー カーセットと呼ぶ。代表的なものに、Helen Heys マーカーセッ ト (バイオメカニクス系) や Animation マーカーセット (アニ メーション系)がある。しかし実際の現場では、これらマーカ ーセットをカスタマイズして利用する事が多く、これがデータ を共有する上での足かせとなっていた。特に、建築やインテリ アでのモーションキャプチャの採用は最近のことであり、共通 の仕様が無かった。そこで、Helen Heys マーカーセットを基本 とし、建築空間内での動作が取りやすくするように改良した建 研版マーカーセット注1)を検討した。その仕様を図1に示す。

表1 各モーションキャプチャシステムの主な特徴

	長所	短所
光学式	人体にはマーカーのみを取り付けるため、動作に制約が少ない。	複数のカメラが必要。比較的狭い空間でしか 使用できず、専用スタジオが必要。
機械式	無線LAN との併用で広範囲に動作取得が出来る。	マーカーとトラッカーの一部を装着するため光学式に比べて重い。動作に制約が出る。
磁気式	磁気センサーを用いるためマー カーが隠れても問題ない。	磁気センサーの小型化や無線化が難しい。機 敏な動作に対応できない。

表2 導入したキャプチャシステムのスペック

キャプチャ方式	近赤外線感知型のカメラと反射マーカを用いた光学式計 測方式	
空間校正	ダイナミックキャリブレーション方式	
計測用カメラ	Hawk Digital RealTime Camera×8	
サンプリング周波数	1~200Hz	
センサ画素数	640 x 480 (30 万画素)	
制御ソフトウェア	Cortex	
対応 OS	Windows Vista 64bit	

 Top. Head 	2. Front. Head	Rear. Head
4. R. Shoulder	5. R. Offset	6. R. UpperArm
7. R. Elbow	8. R. ForeArm	9. R.Wrist
10. R.Wris.Medial	11. R. Hand	12. L. Shoulder
13. L. UpperArm	14. L. Elbow	15. L. ForeArm
16. L.Wrist	17. L. Wrist. Medial	18. L. Hand
19. R.Asis	20. L. Asis	21. V. Sacral
22. R. Thigh	23. R. Knee	24. R. Shank
25. R. Ankle	26. R. Heel	27. R. Toe
28. L. Thigh	29. L. Knee	30. L. Shank
31. L. Ankle	32. L. Heel	33. L. Toe

図1 建研版マーカーセットの位置と名称

3. デジ典 Viewer のバージョンアップの概要

デジ典 Viewer とは、人の動作をコンピュータで再現し、その姿勢や体型を 2 次元のテンプレートとして書き出すアプリケーションのことを言う。具体的には、先に示したモーションキャプチャで取り込んだ人の動作データをデジ典 Viewer に取り込み、体格や性別を入力したコンピュータマネキンに動作させ、必要とする姿勢データを選択、CAD 等で使用される DXF 形式のテンプレートへと書き出す。図面上に人型のデータが載ることで、空間のスケールを把握しやすくなるなどのメリットがある。先に示した論文*2の執筆時(2005年当時)から6年近くが経ち、CAD などで使われているコンピュータのOS もバージョンアップが進んだ。それに伴い、アプリケーションのバージョンアップが進んだ。それに伴い、アプリケーションのバージョンアップも必要となり、今回幾つかの機能を追加した上で、デジ典 Viewer2.0 をフリーウエアとしてリリースした。表3図2は、バージョンアップの変遷と対応状況である。

4. おわりに

本研究では、上述した検討以外にも、動作の標準化やタイプ 分けを目的として、必要な試技回数や被験者数、動作の解析方 法などの検討も試みた。動作軌跡のばらつきや重心動揺から手 掛かりを見つけようとしたが、残念ながら一般化できるような 答えは得られなかった。しかし、これはDBを構築する際に避けて通れない問題であるため、引き続き検討を行っていきたい。また、「若者らしい」「高齢者らしい」動き等の特徴を見つけ、住宅内事故予防等につなげられればと考えている。

なお本研究は、国交省の先導技術開発助成を用い(独) 建築研究所の重点研究開発課題「高齢社会における暮らしの自立を支援する入浴システム(H21-22)」の一部として研究を行った。その実施に際してはDB分科会(主査:日本女子大学佐藤克志准教授)を組織した。

表 3 バージョンアップの変遷とデジ典 Viewer 2.0 の対応状況

Ver.	Ver. 1. 1	Ver. 1.5	Ver. 2. 0
リリース	2005年3月28日	2010年6月15日	2011年10月23日
対応 os	WindowsNT4.0/Wind	WindowsXP SP2 以降	WindowsXP SP2 以降
X31/LV 02	ows2000/WindowsXP	/Windows7	/Windows7
	Intel Pentium 、	Intel Pentium4,	Intel Pentium5, また
推奨スペック	またはそれ以上	またはそれ以上	はそれ以上
作業人へック	512MB以上	1GB以上	1GB以上
	200MB以上	200MB以上	200MB以上
入力データ	. bvh	. bvh	.bvhtrc
(動作)	. DVII	. DVII	. DVII, . LFG
入力データ	. **	3DFACE(ポリゴンメ	3DFACE (ポリゴンメッシ
(オブジェクト	<u>-)</u>	ッシュ)形式に対応	ュ)形式に対応
出力データ	. dxf	. dxf	. dxf
	人型テンプレート	家具などのデータ	・独自のキャラクターモ
	の書き出しが可能	が読み込み可能	デルを追加可能
特徴			・任意の距離を測定可能
			·動作データに「. trc」
			の読み込み可能

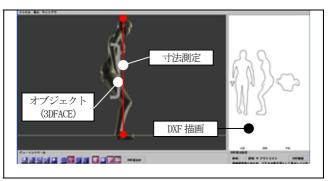


図2オブジェクトの追加と任意の距離の測定

<参考文献>

- 1) データベース構築のための問題点の整理及び手法の検討 -人体寸法や身体機能から見た動的建築設計資料集成の開発-布田健 日本建築学会大会学術講演梗概集 E-1 分冊 p. 771-772 2003 年
- 2) 開発の概要と現状の達成の程度及び課題 -人体寸法や身体機能から見た動的建築設計資料集成の開発- 布田健 日本建築学会大会学術講演梗概集 E-1 分冊 p. 927-928 2005 年 <注釈>
- 1) バイオメカニクスで良く用いられる「Helen Heys マーカーセット」は、以前下肢の運動解析用に設計された。その後、上肢の部分を加えた、産総研の ETL (Extended to Total Limbs)/田 マーカーセットや、Motion Analysis 社のマーカーセットが提案された。これらを参考としながら、建築空間内の動作取得 (特に腕の動作が取得しやすいよう) に必要十分な数 (33 箇所) にまで減らした、建研版マーカーセットを提案した。

(*1(独)建築研究所 上席研究員 博士 (工学))

(*2(独)建築研究所 非常勤職員 工修)